Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Inherit Metab Dis ; 36(2): 247-55, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22991166

RESUMO

INTRODUCTION: Mucopolysaccharidosis type I (MPS I) results in a defective breakdown of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate, which leads to a progressive disease. Enzyme replacement therapy (ERT) results in clearance of these GAGs from a range of tissues and can significantly ameliorate several symptoms. The biochemical efficacy of ERT is generally assessed by the determination of the total urinary excretion of GAGs. However, this has limitations. We studied the concentrations of heparan sulfate and dermatan sulfate derived disaccharides (HS and DS, respectively) in the plasma and urine of seven patients and compared these levels with total urinary GAGs (uGAGs) levels. METHODS: Plasma and urine samples were collected at different time points relative to the weekly ERT for three non-consecutive weeks in seven MPS I patients who had been treated with ERT for at least 2.5 years. Heparan and dermatan sulfate in plasma and urine were enzymatically digested into disaccharides, and HS and DS levels were determined by HPLC-MS/MS analysis. uGAGs were measured by the DMB test. RESULTS: The levels of HS and DS were markedly decreased compared with the levels before the initiation of ERT. However, the concentrations of DS in plasma and of both HS and DS in urine remained significantly elevated in all studied patients, while in six patients the level of total uGAGs had normalized. The concentrations of plasma and urinary HS during the weekly ERT followed a U-shaped curve. However, the effect size is small. The concentrations of plasma and urinary DS and uGAGs appeared to be in a steady state. CONCLUSIONS: HS and DS are sensitive biomarkers for monitoring the biochemical treatment efficacy of ERT and remain elevated despite long-term treatment. This finding may be related to the labeled dose or antibody status of the patient. The timing of the sample collection is not relevant, at least at the current dose of 100 IU/kg/weekly.


Assuntos
Dermatan Sulfato/metabolismo , Dissacarídeos/metabolismo , Terapia de Reposição de Enzimas , Glicosaminoglicanos/urina , Heparitina Sulfato/metabolismo , Mucopolissacaridose I/tratamento farmacológico , Mucopolissacaridose I/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Biomarcadores/urina , Criança , Pré-Escolar , Dermatan Sulfato/sangue , Dermatan Sulfato/urina , Dissacarídeos/sangue , Dissacarídeos/urina , Feminino , Heparitina Sulfato/sangue , Heparitina Sulfato/urina , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mucopolissacaridose I/sangue , Mucopolissacaridose I/urina , Adulto Jovem
2.
Orphanet J Rare Dis ; 10: 42, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25887468

RESUMO

BACKGROUND: The lysosomal storage disorder, mucopolysaccharidosis I (MPS I), commonly manifests with upper airway obstruction and sleep disordered breathing (SDB). The success of current therapies, including haematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT) may be influenced by a number of factors and monitored using biomarkers of metabolic correction. We describe the pattern of SDB seen in the largest MPS I cohort described to date and determine therapies and biomarkers influencing the severity of long-term airway disease. METHODS: Therapeutic, clinical and biomarker data, including longitudinal outcome parameters from 150 sleep oximetry studies were collected in 61 MPS I (44 Hurler, 17 attenuated) patients between 6 months pre to 16 years post-treatment (median follow-up 22 months). The presence and functional nature of an immune response to ERT was determined using ELISA and a cellular uptake inhibition assay. Multivariate analysis was performed to determine significant correlators of airway disease. RESULTS: The incidence of SDB in our cohort is 68%, while 16% require therapeutic intervention for airway obstruction. A greater rate of progression (73%) and requirement for intervention is seen amongst ERT patients in contrast to HSCT treated individuals (24%). Multivariate analysis identifies poorer metabolic clearance, as measured by a rise in the biomarker urinary dermatan sulphate: chondroitin sulphate (DS:CS) ratio, as a significant correlator of increased presence and severity of SDB in MPS I patients (p = 0.0017, 0.008). Amongst transplanted Hurler patients, delivered enzyme (leukocyte iduronidase) at one year is significantly raised in those without SDB (p = 0.004). Cellular uptake inhibitory antibodies in ERT treated patients correlate with reduced substrate clearance and occurrence of severe SDB (p = 0.001). CONCLUSION: We have identified biochemical and therapeutic factors modifying airway disease across the phenotypic spectrum in MPS I. Interventions maximising substrate reduction correlate with improved long-term SDB, while inhibitory antibodies impact on biochemical and clinical outcomes. Monitoring and tolerisation strategies should be re-evaluated to improve detection and minimise the inhibitory antibody response to ERT in MPS I and other lysosomal storage diseases. Future studies should consider the use of sleep disordered breathing as an objective parameter of clinical and metabolic improvement.


Assuntos
Mucopolissacaridose I/metabolismo , Mucopolissacaridose I/terapia , Síndromes da Apneia do Sono/metabolismo , Síndromes da Apneia do Sono/terapia , Biomarcadores/urina , Criança , Pré-Escolar , Terapia de Reposição de Enzimas , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Masculino , Mucopolissacaridose I/urina , Análise Multivariada , Estudos Retrospectivos , Síndromes da Apneia do Sono/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA