Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nucleic Acids Res ; 47(7): 3784-3794, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30753618

RESUMO

Cockayne syndrome group B (CSB, also known as ERCC6) protein is involved in many DNA repair processes and essential for transcription-coupled repair (TCR). The central region of CSB has the helicase motif, whereas the C-terminal region contains important regulatory elements for repair of UV- and oxidative stress-induced damages and double-strand breaks (DSBs). A previous study suggested that a small part (∼30 residues) within this region was responsible for binding to ubiquitin (Ub). Here, we show that the Ub-binding of CSB requires a larger part of CSB, which was previously identified as a winged-helix domain (WHD) and is involved in the recruitment of CSB to DSBs. We also present the crystal structure of CSB WHD in complex with Ub. CSB WHD folds as a single globular domain, defining a class of Ub-binding domains (UBDs) different from 23 UBD classes identified so far. The second α-helix and C-terminal extremity of CSB WHD interact with Ub. Together with structure-guided mutational analysis, we identified the residues critical for the binding to Ub. CSB mutants defective in the Ub binding reduced repair of UV-induced damage. This study supports the notion that DSB repair and TCR may be associated with the Ub-binding of CSB.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/química , Enzimas Reparadoras do DNA/química , Proteínas de Ligação a Poli-ADP-Ribose/química , Ubiquitina/química , Ubiquitinas/química , Fatores de Transcrição Winged-Helix/química , Sequência de Aminoácidos/genética , Sobrevivência Celular , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , DNA Helicases/genética , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/genética , Humanos , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/genética , Conformação Proteica em alfa-Hélice/genética , Ubiquitina/genética , Ubiquitinas/genética , Raios Ultravioleta , Fatores de Transcrição Winged-Helix/genética
2.
Biochem Biophys Res Commun ; 500(2): 163-169, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29625109

RESUMO

Cockayne syndrome (CS) is a severe disorder with no effective treatment. The Cockayne syndrome group B (CSB) gene is one gene responsible for CS and also causes UV sensitive syndrome (UVSS), a disorder that causes mild symptoms. How the CSB gene determines a patient's fate is unknown, but one intriguing point is that in UVSS patient cell, there are nonsense mutations in both alleles at the same position in each upstream region of the PiggyBac transposable element derived 3 (PGBD3) inserted region. In contrast, in CS patient cells, there is at least one allele with several mutations downstream of the PGBD3 inserted region, or there are homozygous mutations in exon 1. Here, we designed and synthesized 24 splice switching oligonucleotides (SSOs) to skip exon 3 in CSB mRNA. Use of these SSOs induced a frame shift in order to generate an alternative stop codon at the upstream region of the PGBD3 invasion site. As a result, a reduction of mitochondrial membrane potential following H2O2 treatment in CS cell was recovered. It was demonstrated that up-regulation of several gene expression brought about by SSOs are related to mitochondrial dysfunction in CS cells.


Assuntos
Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Oligonucleotídeos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Splicing de RNA/genética , Linhagem Celular , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Éxons , Humanos , Peróxido de Hidrogênio/farmacologia , Potencial da Membrana Mitocondrial , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção , Raios Ultravioleta
3.
Biochim Biophys Acta Gen Subj ; 1862(9): 2031-2042, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29959982

RESUMO

BACKGROUND: Nucleotide excision repair (NER) pathway is an evolutionarily conserved mechanism of genome maintenance. It detects and repairs distortions in DNA double helix. Xeroderma Pigmentosum group B (XPB) and group D (XPD) are important helicases in NER and are also critical subunits of TFIIH complex. We have studied XPB and XPD for the first time from the basal metazoan Hydra which exhibits lack of organismal senescence. METHODS: In silico analysis of proteins was performed using MEGA 6.0, Clustal Omega, Swiss Model, etc. Gene expression was studied by in situ hybridization and qRT-PCR. Repair of CPDs was studied by DNA blot assay. Interactions between proteins were determined by co- immunoprecipitation. HyXPB and HyXPD were cloned in pET28b, overexpressed and helicase activity of purified proteins was checked. RESULTS: In silico analysis revealed presence of seven classical helicase motifs in HyXPB and HyXPD. Both proteins revealed polarity-dependent helicase activity. Hydra repairs most of the thymine dimers induced by UVC (500 J/m2) by 72 h post-UV exposure. HyXPB and HyXPD transcripts, localized all over the body column, remained unaltered post-UV exposure indicating their constitutive expression. In spite of high levels of sequence conservation, XPB and XPD failed to rescue defects in human XPB- and XPD-deficient cell lines. This was due to their inability to get incorporated into the TFIIH multiprotein complex. CONCLUSIONS: Present results along with our earlier work on DNA repair proteins in Hydra bring out the utility of Hydra as model system to study evolution of DNA repair mechanisms in metazoans.


Assuntos
Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Hydra/enzimologia , Raios Ultravioleta , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Humanos , Hydra/genética , Hydra/efeitos da radiação , Filogenia , Homologia de Sequência , Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética
4.
J Biol Chem ; 291(3): 1387-97, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26620705

RESUMO

Cockayne syndrome (CS) is a recessive disorder that results in deficiencies in transcription-coupled nucleotide excision repair (TC-NER), a subpathway of nucleotide excision repair, and cells from CS patients exhibit hypersensitivity to UV light. CS group B protein (CSB), which is the gene product of one of the genes responsible for CS, belongs to the SWI2/SNF2 DNA-dependent ATPase family and has an ATPase domain and an ubiquitin-binding domain (UBD) in the central region and the C-terminal region, respectively. The C-terminal region containing the UBD is essential for the functions of CSB. In this study, we generated several CSB deletion mutants and analyzed the functions of the C-terminal region of CSB in TC-NER. Not only the UBD but also the C-terminal 30-amino acid residues were required for UV light resistance and TC-NER. This region was needed for the interaction of CSB with RNA polymerase II, the translocation of CS group A protein to the nuclear matrix, and the association of CSB with chromatin after UV irradiation. CSB was modified by small ubiquitin-like modifier 2/3 in a UV light-dependent manner. This modification was abolished in a CSB mutant lacking the C-terminal 30 amino acid residues. However, the substitution of lysine residues in this region with arginine did not affect SUMOylation or TC-NER. By contrast, substitution of a lysine residue in the N-terminal region with arginine decreased SUMOylation and resulted in cells with defects in TC-NER. These results indicate that both the most C-terminal region and SUMOylation are important for the functions of CSB in TC-NER.


Assuntos
DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Sumoilação , Transcrição Gênica , Substituição de Aminoácidos , Western Blotting , Linhagem Celular , Quebras de DNA/efeitos da radiação , DNA Helicases/química , DNA Helicases/genética , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Deleção de Genes , Humanos , Imunoprecipitação , Lisina , Mutação , Proteínas de Ligação a Poli-ADP-Ribose , Domínios e Motivos de Interação entre Proteínas , Tolerância a Radiação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/efeitos da radiação , Ubiquitinas/metabolismo , Raios Ultravioleta/efeitos adversos
5.
J Biol Chem ; 291(26): 13771-9, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27129218

RESUMO

UV-sensitive syndrome is an autosomal recessive disorder characterized by hypersensitivity to UV light and deficiency in transcription-coupled nucleotide excision repair (TC-NER), a subpathway of nucleotide excision repair that rapidly removes transcription-blocking DNA damage. UV-sensitive syndrome consists of three genetic complementation groups caused by mutations in the CSA, CSB, and UVSSA genes. UV-stimulated scaffold protein A (UVSSA), the product of UVSSA, which is required for stabilization of Cockayne syndrome group B (CSB) protein and reappearance of the hypophosphorylated form of RNA polymerase II after UV irradiation, forms a complex with ubiquitin-specific peptidase 7 (USP7). In this study, we demonstrated that the deubiquitination activity of USP7 is suppressed by its interaction with UVSSA. The interaction required the tumor necrosis factor receptor-associated factor domain of USP7 and the central region of UVSSA and was disrupted by an amino acid substitution in the tumor necrosis factor receptor-associated factor-binding motif of UVSSA. Cells expressing mutant UVSSA were highly sensitive to UV irradiation and defective in recovery of RNA synthesis after UV irradiation. These results indicate that the interaction between UVSSA and USP7 is important for TC-NER. Furthermore, the mutant UVSSA was rapidly degraded by the proteasome, and CSB was also degraded after UV irradiation as observed in UVSSA-deficient cells. Thus, stabilization of UVSSA by interaction with USP7 is essential for TC-NER.


Assuntos
Proteínas de Transporte/metabolismo , Reparo do DNA/fisiologia , RNA Polimerase II/metabolismo , Transcrição Gênica/fisiologia , Ubiquitina Tiolesterase/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Transporte/genética , Reparo do DNA/efeitos da radiação , Humanos , Estabilidade Proteica/efeitos da radiação , RNA Polimerase II/genética , Células Sf9 , Spodoptera , Ubiquitina Tiolesterase/genética , Peptidase 7 Específica de Ubiquitina , Raios Ultravioleta
6.
J Hum Genet ; 60(5): 259-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25716912

RESUMO

Mutations in XPD cause xeroderma pigmentosum (XP), XP and Cockayne syndrome (CS) crossover syndrome (XP/CS), trichothiodystrophy and cerebro-oculo-facio-skeletal syndrome (COFS). COFS represents the most severe end of the CS spectrum. This study reports two Japanese patients, COFS-05-135 and COFS-Chiba1, who died at ages of <1 year and exhibited typical COFS manifestations caused by XPD mutations p.[I619del];[R666W] and p.[G47R];[I619del], respectively. Two other cases of severe XP-D/CS (XP group D/CS), XP1JI (p.[G47R];[0]) and XPCS1PV (p.[R666W];[0]), died at ages <2 years. On the other hand, two cases of mild XP-D/CS, XP1NE (p.[G47R];[L461V;V716_R730del]) and XPCS118LV (p.[L461V;V716_R730del];[R666W]), lived beyond 37 years of age. p.I619Del and p.[L461V;V716_R730del] are functionally null; therefore, despite the differences in clinical manifestations, the functional protein in all of these patients was either p.G47R or p.R666W. To resolve the discrepancies in these XPD genotype-phenotype relationships, the p.[L461V;V716_R730del] allele was analyzed and we found that p.[L461V;A717G] was expressed from the same allele as p.[L461V;V716_R730del] by authentic splicing. Additionally, p.[L461V;A717G] could partially rescue the loss of XPD function, resulting in the milder manifestations observed in XP1NE and XPCS118LV.


Assuntos
Fator de Transcrição TFIIH/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/genética , Linhagem Celular , Evolução Fatal , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Fator de Transcrição TFIIH/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
7.
Genes Cells ; 17(3): 173-85, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22353549

RESUMO

The xeroderma pigmentosum group F-cross-complementing rodent repair deficiency group 1 (XPF-ERCC1) complex is a structure-specific endonuclease involved in nucleotide excision repair (NER) and interstrand cross-link (ICL) repair. Patients with XPF mutations may suffer from two forms of xeroderma pigmentosum (XP): XP-F patients show mild photosensitivity and proneness to skin cancer but rarely show any neurological abnormalities, whereas XFE patients display symptoms of severe XP symptoms, growth retardation and accelerated aging. Xpf knockout mice display accelerated aging and die before weaning. These results suggest that the XPF-ERCC1 complex has additional functions besides NER and ICL repair and is essential for development and growth. In this study, we show a partial colocalization of XPF with mitotic spindles and Eg5. XPF knockdown in cells led to an increase in the frequency of abnormal nuclear morphology and mitosis. Similarly, the frequency of abnormal nuclei and mitosis was increased in XP-F and XFE cells. In addition, we showed that Eg5 enhances the action of XPF-ERCC1 nuclease activity. Taken together, these results suggest that the interaction between XPF and Eg5 plays a role in mitosis and DNA repair and offer new insights into the pathogenesis of XP-F and XFE.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Cinesinas/metabolismo , Mitose , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Animais , Núcleo Celular/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Cinesinas/genética , Camundongos
8.
J Biol Chem ; 286(7): 5476-83, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21148310

RESUMO

The xeroderma pigmentosum group A protein (XPA) is a core component of nucleotide excision repair (NER). To coordinate early stage NER, XPA interacts with various proteins, including replication protein A (RPA), ERCC1, DDB2, and TFIIH, in addition to UV-damaged or chemical carcinogen-damaged DNA. In this study, we investigated the effects of mutations in the RPA binding regions of XPA on XPA function in NER. XPA binds through an N-terminal region to the middle subunit (RPA32) of the RPA heterotrimer and through a central region that overlaps with its damaged DNA binding region to the RPA70 subunit. In cell-free NER assays, an N-terminal deletion mutant of XPA showed loss of binding to RPA32 and reduced DNA repair activity, but it could still bind to UV-damaged DNA and RPA. In contrast, amino acid substitutions in the central region reduced incisions at the damaged site in the cell-free NER assay, and four of these mutants (K141A, T142A, K167A, and K179A) showed reduced binding to RPA70 but normal binding to damaged DNA. Furthermore, mutants that had one of the four aforementioned substitutions and an N-terminal deletion exhibited lower DNA incision activity and binding to RPA than XPA with only one of these substitutions or the deletion. Taken together, these results indicate that XPA interaction with both RPA32 and RPA70 is indispensable for NER reactions.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Proteína de Replicação A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Substituição de Aminoácidos , Células HeLa , Humanos , Mutação de Sentido Incorreto , Ligação Proteica , Proteína de Replicação A/genética , Proteína de Xeroderma Pigmentoso Grupo A/genética
9.
Genes Cells ; 16(1): 101-14, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21143350

RESUMO

Two UV-sensitive syndrome patients who have mild photosensitivity without detectable somatic abnormalities lack detectable Cockayne syndrome group B (CSB) protein because of a homozygous null mutation in the CSB gene. In contrast, mutant CSB proteins are produced in CS-B patients with the severe somatic abnormalities of Cockayne syndrome and photosensitivity. It is known that the piggyBac transposable element derived 3 is integrated within the CSB intron 5, and that CSB-piggyBac transposable element derived 3 fusion (CPFP) mRNA is produced by alternative splicing. We found that CPFP or truncated CSB protein derived from CPFP mRNA was stably produced in CS-B patients, and that wild-type CSB, CPFP, and truncated CSB protein interacted with DNA topoisomerase I. We also found that CPFP inhibited repair of a camptothecin-induced topoisomerase I-DNA covalent complex. The inhibition was suppressed by the presence of wild-type CSB, consistent with the autosomal recessive inheritance of Cockayne syndrome. These results suggested that reduced repair of a DNA topoisomerase I-DNA covalent complex because of truncated CSB proteins is involved in the pathogenesis of CS-B.


Assuntos
Enzimas Reparadoras do DNA/fisiologia , Reparo do DNA/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas Mutantes/genética , Linhagem Celular , Linhagem Celular Transformada , DNA/genética , DNA/metabolismo , DNA Topoisomerases Tipo I/genética , Fibroblastos/efeitos da radiação , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Íntrons , Mutação , Proteínas de Ligação a Poli-ADP-Ribose , RNA Mensageiro/genética , Transfecção , Raios Ultravioleta
10.
DNA Repair (Amst) ; 113: 103318, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35325630

RESUMO

DNA-damaging anti-cancer drugs are used clinically to induce cell death by causing DNA strand breaks or DNA replication stress. Camptothecin (CPT) and cisplatin are commonly used anti-cancer drugs, and their combined use enhances the anti-tumour effects. However, the mechanism underlying this enhanced effect has not been well studied. In this study, we analysed the combined effect of CPT and cisplatin or ultraviolet (UV) and found that CPT suppresses transcription recovery after UV damage and induces the disappearance of the Cockayne syndrome group B (CSB) protein, a transcription-coupled nucleotide excision repair (TC-NER) factor. This CPT-induced disappearance of CSB expression was suppressed by proteasome and transcription inhibitors. Moreover, CSB ubiquitination was detected after CPT treatment in a transcription-dependent manner, suggesting that the transcription stress caused by CPT induces CSB ubiquitination, resulting in CSB undetectability. However, Cockayne syndrome group A (CSA) and CUL4A were not involved in the CPT-induced CSB undetectability, suggesting that CSB ubiquitination caused by CPT is regulated differently from the UV response. However, cisplatin or UV sensitivity was enhanced by CPT even in CSB- or CSA-knockout cells. Furthermore, the excessive CSB expression, which suppressed CSB ubiquitination, did not cancel the combined effect of CPT. These results suggest that CPT blocks the repair of cisplatin or UV-induced DNA damage regardless of TC-NER status. CPT possibly compromised the alternative repair pathways other than TC-NER, leading to the suppression of transcription recovery and enhancement of cell killing.

11.
Cancer Sci ; 102(10): 1840-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21756275

RESUMO

BRCA1 is an important gene involved in susceptibility to breast and ovarian cancer and its product regulates the cellular response to DNA double-strand breaks. Here, we present evidence that BRCA1 also contributes to the transcription-coupled repair (TCR) of ultraviolet (UV) light-induced DNA damage. BRCA1 immediately accumulates at the sites of UV irradiation-mediated damage in cell nuclei in a manner that is fully dependent on both Cockayne syndrome B (CSB) protein and active transcription. Suppression of BRCA1 expression inhibits the TCR of UV lesions and increases the UV sensitivity of cells proficient in TCR. BRCA1 physically interacts with CSB protein. BRCA1 polyubiquitinates CSB and this polyubiquitination and subsequent degradation of CSB occur following UV irradiation, even in the absence of Cockayne syndrome A (CSA) protein. The depletion of BRCA1 expression increases the UV sensitivity of CSA-deficient cells. These results indicate that BRCA1 is involved in TCR and that a BRCA1-dependent polyubiquitination pathway for CSB exists alongside the CSA-dependent pathway to yield more efficient excision repair of lesions on the transcribed DNA strand.


Assuntos
Proteína BRCA1/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Proteína BRCA1/genética , Linhagem Celular Tumoral , DNA/genética , Enzimas Reparadoras do DNA/genética , Células HEK293 , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Raios Ultravioleta
12.
J Hum Genet ; 56(1): 77-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20944642

RESUMO

Trichothiodystrophy (TTD) is a rare autosomal recessive disorder characterized by sulfur-deficient brittle hair complicated with ichthyosis, physical and mental retardation, and proneness to infections. Approximately half of TTD patients exhibit cutaneous photosensitivity because of the defect of nucleotide excision repair. Three genes, XPB, XPD and TTDA, have been identified as causative genes of photosensitive TTD. These three genes are components of basal transcription factor IIH. Most TTD cases have been reported in Europe and North America. We report a severely affected Japanese TTD patient with XPD mutations. Interestingly, his father has ichthyotic skin. The alteration in the paternal allele was a nucleotide substitution leading to Arg-722 to Trp (R722W), as previously reported in TTD patients. The other alteration in the maternal allele was a novel 3-bp deletion at nucleotides 67-69, resulting in the deletion of Ser-23, which is located upstream of helicase motif I and is the closest to the N-terminal end of XPD in reported mutations. The expression study showed that the two alterations were causative mutations for TTD. In Asia, it is likely that there are TTD patients who have not been diagnosed.


Assuntos
Povo Asiático/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética , Sequência de Bases , Pré-Escolar , Análise Mutacional de DNA , Humanos , Masculino , Síndromes de Tricotiodistrofia/genética
13.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-34148871

RESUMO

Nucleotide excision repair (NER) pathway is a DNA repair mechanism that rectifies a wide spectrum of DNA lesions. Xeroderma pigmentosum group of proteins (XPA through XPG) orchestrate the NER pathway in humans. We have earlier studied XPA homolog from Hydra (HyXPA) and found it to be similar to human XPA. Here, we examined if HyXPA can functionally complement human XPA-deficient cells and reduce their sensitivity to UV radiation. We found that HyXPA was able to partially rescue XPA-deficient human cells from UV by its binding to chromatin of UV-irradiated cells. However, HyXPA failed to bind replication protein A (RPA70), a key interacting partner of human XPA in NER pathway. This could be attributed to changes in certain amino acid residues that have occurred during evolution, leading to prevention of some interactions between Hydra and human proteins.


Assuntos
Cromatina/química , Reparo do DNA , DNA/genética , Evolução Molecular , Tolerância a Radiação/genética , Proteína de Xeroderma Pigmentoso Grupo A/genética , Sequência de Aminoácidos , Animais , Linhagem Celular Transformada , Cromatina/metabolismo , DNA/metabolismo , Dano ao DNA , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Expressão Gênica , Teste de Complementação Genética , Humanos , Hydra , Plasmídeos/química , Plasmídeos/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transfecção , Raios Ultravioleta , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
14.
Mol Cell Biol ; 27(7): 2538-47, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17242193

RESUMO

Transcription-coupled repair (TCR) efficiently removes a variety of lesions from the transcribed strand of active genes. Mutations in Cockayne syndrome group A and B genes (CSA and CSB) result in defective TCR, but the molecular mechanism of TCR in mammalian cells is not clear. We have found that CSA protein is translocated to the nuclear matrix after UV irradiation and colocalized with the hyperphosphorylated form of RNA polymerase II and that the translocation is dependent on CSB. We developed a cell-free system for the UV-induced translocation of CSA. A cytoskeleton (CSK) buffer-soluble fraction containing CSA and a CSK buffer-insoluble fraction prepared from UV-irradiated CS-A cells were mixed. After incubation, the insoluble fraction was treated with DNase I. CSA protein was detected in the DNase I-insoluble fraction, indicating that it was translocated to the nuclear matrix. In this cell-free system, the translocation was dependent on UV irradiation, CSB function, and TCR-competent CSA. Moreover, the translocation was dependent on functional TFIIH, as well as chromatin structure and transcription elongation. These results suggest that alterations of chromatin at the RNA polymerase II stall site, which depend on CSB and TFIIH at least, are necessary for the UV-induced translocation of CSA to the nuclear matrix.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Matriz Nuclear/metabolismo , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição/metabolismo , Raios Ultravioleta , Linhagem Celular Transformada , Núcleo Celular/metabolismo , Sistema Livre de Células , Cromatina/fisiologia , Cromatina/ultraestrutura , Enzimas Reparadoras do DNA/genética , Fibroblastos/citologia , Humanos , Transporte Proteico/efeitos da radiação , Fator de Transcrição TFIIH/genética , Fatores de Transcrição/genética , Transcrição Gênica
15.
J Cell Biochem ; 106(5): 920-8, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19180575

RESUMO

We have previously reported that Monad, a novel WD40 repeat protein, potentiates apoptosis induced by tumor necrosis factor-alpha and cycloheximide. By affinity purification and mass spectrometry, RNA polymerase II-associated protein 3 (RPAP3) was identified as a Monad binding protein and may function with Monad as a novel modulator of apoptosis pathways. Here we report that Reptin, a highly conserved AAA + ATPase that is part of various chromatin-remodeling complexes, is also involved in the association of RPAP3 by immunoprecipitation and confocal microscopic analysis. Overexpression of RPAP3 induced HEK293 cells to death after UV-irradiation. Loss of RPAP3 by RNAi improved HeLa cell survival after UV-induced DNA damage and attenuated the phosphorylation of H2AX. Depletion of Reptin reduced cell survival and facilitated the phosphorylation on H2AX. These results suggest that RPAP3 modulates UV-induced DNA damage by regulating H2AX phosphorylation.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Histonas/metabolismo , Raios Ultravioleta , ATPases Associadas a Diversas Atividades Celulares , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/fisiologia , Morte Celular/efeitos da radiação , Linhagem Celular , DNA Helicases/fisiologia , Humanos , Fosforilação
16.
Mol Biol Cell ; 16(5): 2518-28, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15758026

RESUMO

Originally detected in fixed cells, DNA replication foci (RFi) were later visualized in living cells by using green fluorescent protein (GFP)-tagged proliferating cell nuclear antigen (PCNA) and DNA ligase I. It was shown using fluorescence redistribution after photobleaching (FRAP) assay that focal GFP-PCNA slowly exchanged, suggesting the existence of a stable replication holocomplex. Here, we used the FRAP assay to study the dynamics of the GFP-tagged PCNA-binding proteins: Flap endonuclease 1 (Fen1) and DNA polymerase eta (Pol eta). We also used the GFP-Cockayne syndrome group A (CSA) protein, which does associate with transcription foci after DNA damage. In normal cells, GFP-Pol eta and GFP-Fen1 are mobile with residence times at RFi (t(m)) approximately 2 and approximately 0.8 s, respectively. GFP-CSA is also mobile but does not concentrate at discrete foci. After methyl methanesulfonate (MMS) damage, the mobile fraction of focal GFP-Fen1 decreased and t(m) increased, but it then recovered. The mobilities of focal GFP-Pol eta and GFP-PCNA did not change after MMS. The mobility of GFP-CSA did not change after UV-irradiation. These data indicate that the normal replication complex contains at least two mobile subunits. The decrease of the mobile fraction of focal GFP-Fen1 after DNA damage suggests that Fen1 exchange depends on the rate of movement of replication forks.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Endonucleases Flap/metabolismo , Fase S/fisiologia , Animais , Sequência de Bases , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/efeitos da radiação , Linhagem Celular , Núcleo Celular/metabolismo , Cricetinae , Dano ao DNA , Enzimas Reparadoras do DNA , DNA Complementar/genética , DNA Polimerase Dirigida por DNA/genética , Endonucleases Flap/genética , Recuperação de Fluorescência Após Fotodegradação , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Metanossulfonato de Metila/toxicidade , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição , Transfecção , Raios Ultravioleta
17.
FEBS J ; 285(5): 965-976, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29323787

RESUMO

Transcription-coupled nucleotide excision repair (TC-NER) is a subpathway of nucleotide excision repair that efficiently removes transcription-blocking DNA damage from the transcribed strands of active genes. UVSSA is a causative gene for UV-sensitive syndrome (UVS S), which is an autosomal recessive disorder characterized by hypersensitivity to UV light and deficiency in TC-NER. UV-stimulated scaffold protein A (UVSSA), the product of UVSSA, forms a complex with ubiquitin-specific peptidase 7 (USP7) and is stabilized by interaction with USP7. The central region of UVSSA, which contains the tumor necrosis factor receptor-associated factor (TRAF)-binding motif, is required for the interaction with the N-terminal TRAF domain of USP7. Here, we showed that UVSSA is mono-ubiquitinated in vitro and identified a lysine residue (Lys414 ) in UVSSA as the target of ubiquitination. The deubiquitination activity of USP7 was inhibited by the ubiquitin-conjugating enzyme UbcH6. Lys414 was also modified by poly-ubiquitin chains in vivo. UVSSA deficient in the interaction with USP7 is ubiquitinated and degraded by the proteasome, and the degradation leads to deficiency in TC-NER. The substitution of Lys414 by Arg of UVSSA inhibited its degradation and thereby suppressed the deficiency in TC-NER.


Assuntos
Proteínas de Transporte/metabolismo , Reparo do DNA , Peptidase 7 Específica de Ubiquitina/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Humanos , Lisina/química , Mutação , Mutação de Sentido Incorreto , Fenótipo , Mutação Puntual , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteólise , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/farmacologia , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Ubiquitinação
18.
Cell Rep ; 19(1): 162-174, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28380355

RESUMO

Ultraviolet (UV) radiation is a carcinogen that generates DNA lesions. Here, we demonstrate an unexpected role for DGCR8, an RNA binding protein that canonically functions with Drosha to mediate microRNA processing, in the repair of UV-induced DNA lesions. Treatment with UV induced phosphorylation on serine 153 (S153) of DGCR8 in both human and murine cells. S153 phosphorylation was critical for cellular resistance to UV, the removal of UV-induced DNA lesions, and the recovery of RNA synthesis after UV exposure but not for microRNA expression. The RNA-binding and Drosha-binding activities of DGCR8 were not critical for UV resistance. DGCR8 depletion was epistatic to defects in XPA, CSA, and CSB for UV sensitivity. DGCR8 physically interacted with CSB and RNA polymerase II. JNKs were involved in the UV-induced S153 phosphorylation. These findings suggest that UV-induced S153 phosphorylation mediates transcription-coupled nucleotide excision repair of UV-induced DNA lesions in a manner independent of microRNA processing.


Assuntos
Dano ao DNA , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo , Animais , Anisomicina/metabolismo , Antracenos/metabolismo , DNA/metabolismo , DNA/efeitos da radiação , Reparo do DNA , Células HCT116 , Células HeLa , Humanos , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/metabolismo , Camundongos , Fosforilação , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Ribonuclease III/genética , Raios Ultravioleta
19.
DNA Repair (Amst) ; 4(5): 537-45, 2005 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-15811626

RESUMO

Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to UV irradiation and high incidence of skin cancer caused by inherited defects in DNA repair. Mutational malfunction of damaged-DNA binding protein 2 (DDB2) causes the XP complementation group E (XP-E). DDB2 together with DDB1 comprises a heterodimer called DDB complex, which is involved in damaged-DNA binding and nucleotide excision repair. Interestingly, by screening for a cellular protein(s) that interacts with Cullin 4A (Cul4A), a key component of the ubiquitin ligase complex, we identified DDB1. Immunoprecipitation confirmed that Cul4A interacts with DDB1 and also associates with DDB2. To date, it has been reported that DDB2 is rapidly degraded after UV irradiation and that overproduction of Cul4A stimulates the ubiquitylation of DDB2 in the cells. However, as biochemical analysis using pure Cul4A-containing E3 is missing, it is still unknown whether the Cul4A complex directly ubiquitylates DDB2 or not. We thus purified the Cul4A-containing E3 complex to near homogeneity and attempted to ubiquitylate DDB2 in vitro. The ubiquitylation of DDB2 was reconstituted using this pure E3 complex, indicating that DDB-Cul4A E3 complex in itself can ubiquitylate DDB2 directly. We also showed that an amino acid substitution, K244E, in DDB2 derived from a XP-E patient did not affect its ubiquitylation.


Assuntos
Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina/metabolismo , Xeroderma Pigmentoso/genética , Substituição de Aminoácidos , Animais , Células CHO , Cricetinae , Proteínas Culina/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Imunoprecipitação , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Complexos Ubiquitina-Proteína Ligase/genética , Raios Ultravioleta , Xeroderma Pigmentoso/metabolismo
20.
Mol Cell Biol ; 35(18): 3178-88, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26149386

RESUMO

XPG is a causative gene underlying the photosensitive disorder xeroderma pigmentosum group G (XP-G) and is involved in nucleotide excision repair. Here, we show that XPG knockdown represses epidermal growth factor (EGF)-induced FOS transcription at the level of transcription elongation with little effect on EGF signal transduction. XPG interacted with transcription elongation factors in concert with TFIIH, suggesting that the XPG-TFIIH complex serves as a transcription elongation factor. The XPG-TFIIH complex was recruited to promoter and coding regions of both EGF-induced (FOS) and housekeeping (EEF1A1) genes. Further, EGF-induced recruitment of RNA polymerase II and TFIIH to FOS was reduced by XPG knockdown. Importantly, EGF-induced FOS transcription was markedly lower in XP-G/Cockayne syndrome (CS) cells expressing truncated XPG than in control cells expressing wild-type (WT) XPG, with less significant decreases in XP-G cells with XPG nuclease domain mutations. In corroboration of this finding, both WT XPG and a missense XPG mutant from an XP-G patient were recruited to FOS upon EGF stimulation, but an XPG mutant mimicking a C-terminal truncation from an XP-G/CS patient was not. These results suggest that the XPG-TFIIH complex is involved in transcription elongation and that defects in this association may partly account for Cockayne syndrome in XP-G/CS patients.


Assuntos
Síndrome de Cockayne/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Proteínas Nucleares/genética , Elongação da Transcrição Genética/fisiologia , Fatores de Transcrição TFIII/metabolismo , Fatores de Transcrição/genética , Xeroderma Pigmentoso/genética , Linhagem Celular Tumoral , Reparo do DNA , Fator de Crescimento Epidérmico/metabolismo , Células HEK293 , Células HeLa , Humanos , Fator 1 de Elongação de Peptídeos/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Polimerase II/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA