Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Genet ; 50: 133-154, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27617970

RESUMO

The life cycles of eukaryotes alternate between haploid and diploid phases, which are initiated by meiosis and gamete fusion, respectively. In both ascomycete and basidiomycete fungi and chlorophyte algae, the haploid-to-diploid transition is regulated by a pair of paralogous homeodomain protein encoding genes. That a common genetic program controls the haploid-to-diploid transition in phylogenetically disparate eukaryotic lineages suggests this may be the ancestral function for homeodomain proteins. Multicellularity has evolved independently in many eukaryotic lineages in either one or both phases of the life cycle. Organisms, such as land plants, exhibiting a life cycle whereby multicellular bodies develop in both the haploid and diploid phases are often referred to as possessing an alternation of generations. We review recent progress on understanding the genetic basis for the land plant alternation of generations and highlight the roles that homeodomain-encoding genes may have played in the evolution of complex multicellularity in this lineage.


Assuntos
Evolução Biológica , Plantas/genética , Briófitas/genética , Clorófitas/genética , Diploide , Eucariotos , Fungos/genética , Haploidia , Proteínas de Homeodomínio/genética , Magnoliopsida/genética , Phaeophyceae/genética , Filogenia , Rodófitas/genética
2.
Plant Cell ; 33(1): 129-152, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33751095

RESUMO

Lignans/neolignans are generally synthesized from coniferyl alcohol (CA) in the cinnamate/monolignol pathway by oxidation to generate the corresponding radicals with subsequent stereoselective dimerization aided by dirigent proteins (DIRs). Genes encoding oxidases and DIRs for neolignan biosynthesis have not been identified previously. In Arabidopsis thaliana, the DIR AtDP1/AtDIR12 plays an essential role in the 8-O-4' coupling in neolignan biosynthesis by unequivocal structural determination of the compound missing in the atdp1 mutant as a sinapoylcholine (SC)-conjugated neolignan, erythro-3-{4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-hydroxymethylethoxy]-3,5-dimethoxyphenyl}acryloylcholine. Phylogenetic analyses showed that AtDP1/AtDIR12 belongs to the DIR-a subfamily composed of DIRs for 8-8' coupling of monolignol radicals. AtDP1/AtDIR12 is specifically expressed in outer integument 1 cells in developing seeds. As a putative oxidase for neolignan biosynthesis, we focused on AtLAC5, a laccase gene coexpressed with AtDP1/AtDIR12. In lac5 mutants, the abundance of feruloylcholine (FC)-conjugated neolignans decreased to a level comparable to those in the atdp1 mutant. In addition, SC/FC-conjugated neolignans were missing in the seeds of mutants defective in SCT/SCPL19, an enzyme that synthesizes SC. These results strongly suggest that AtDP1/AtDIR12 and AtLAC5 are involved in neolignan biosynthesis via SC/FC. A tetrazolium penetration assay showed that seed coat permeability increased in atdp1 mutants, suggesting a protective role of neolignans in A. thaliana seeds.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lignanas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo
3.
New Phytol ; 236(3): 1182-1196, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35842793

RESUMO

Land plant spermatozoids commonly possess characteristic structures such as the spline, which consists of a microtubule array, the multilayered structure (MLS) in which the uppermost layer is a continuum of the spline, and multiple flagella. However, the molecular mechanisms underpinning spermatogenesis remain to be elucidated. We successfully identified candidate genes involved in spermatogenesis, deeply divergent BLD10s, by computational analyses combining multiple methods and omics data. We then examined the functions of BLD10s in the liverwort Marchantia polymorpha and the moss Physcomitrium patens. MpBLD10 and PpBLD10 are required for normal basal body (BB) and flagella formation. Mpbld10 mutants exhibited defects in remodeling of the cytoplasm and nucleus during spermatozoid formation, and thus MpBLD10 should be involved in chromatin reorganization and elimination of the cytoplasm during spermiogenesis. We identified orthologs of MpBLD10 and PpBLD10 in diverse Streptophyta and found that MpBLD10 and PpBLD10 are orthologous to BLD10/CEP135 family proteins, which function in BB assembly. However, BLD10s evolved especially quickly in land plants and MpBLD10 might have acquired additional functions in spermatozoid formation through rapid molecular evolution.


Assuntos
Bryopsida , Marchantia , Animais , Corpos Basais , Bryopsida/genética , Cromatina/metabolismo , Gametogênese Vegetal , Marchantia/genética , Marchantia/metabolismo , Filogenia , Espermatogênese/genética
4.
Plant Mol Biol ; 107(4-5): 431-449, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34817767

RESUMO

KEY MESSAGE: Complete chloroplast genome sequence of a moss, Takakia lepidozioides (Takakiopsida) is reported. The largest collection of genes in mosses and the intensive RNA editing were discussed from evolutionary perspectives. We assembled the entire plastid genome sequence of Takakia lepidozioides (Takakiopsida), emerging from the first phylogenetic split among extant mosses. The genome sequences were assembled into a circular molecule 149,016 bp in length, with a quadripartite structure comprising a large and a small single-copy region separated by inverted repeats. It contained 88 genes coding for proteins, 32 for tRNA, four for rRNA, two open reading frames, and at least one pseudogene (tufA). This is the largest number of genes of all sequenced plastid genomes in mosses and Takakia is the only moss that retains the seven coding genes ccsA, cysA, cysT, petN rpoA, rps16 and trnPGGG. Parsimonious interpretation of gene loss suggests that the last common ancestor of bryophytes had all seven genes and that mosses lost at least three of them during their diversification. Analyses of the plastid transcriptome identified the extraordinary frequency of RNA editing with more than 1100 sites. We indicated a close correlation between the monoplastidy of vegetative tissue and the intensive RNA editing sites in the plastid genome in land plant lineages. Here, we proposed a hypothesis that the small population size of plastids in each vegetative cell of some early diverging land plants, including Takakia, might cause the frequent fixation of mutations in plastid genome through the intracellular genetic drift and that deleterious mutations might be continuously compensated by RNA editing during or following transcription.


Assuntos
Briófitas/genética , Evolução Molecular , Genomas de Plastídeos/genética , Edição de RNA , Sequenciamento Completo do Genoma/métodos , Briófitas/classificação , Proteínas de Cloroplastos/classificação , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Genes de Cloroplastos/genética , Variação Genética , Mutação , Filogenia , Folhas de Planta/genética , RNA-Seq/métodos , Rizoma/genética , Especificidade da Espécie
5.
New Phytol ; 229(2): 735-754, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32790880

RESUMO

Extant land plants consist of two deeply divergent groups, tracheophytes and bryophytes, which shared a common ancestor some 500 million years ago. While information about vascular plants and the two of the three lineages of bryophytes, the mosses and liverworts, is steadily accumulating, the biology of hornworts remains poorly explored. Yet, as the sister group to liverworts and mosses, hornworts are critical in understanding the evolution of key land plant traits. Until recently, there was no hornwort model species amenable to systematic experimental investigation, which hampered detailed insight into the molecular biology and genetics of this unique group of land plants. The emerging hornwort model species, Anthoceros agrestis, is instrumental in our efforts to better understand not only hornwort biology but also fundamental questions of land plant evolution. To this end, here we provide an overview of hornwort biology and current research on the model plant A. agrestis to highlight its potential in answering key questions of land plant biology and evolution.


Assuntos
Anthocerotophyta , Briófitas , Embriófitas , Anthocerotophyta/genética , Briófitas/genética , Embriófitas/genética , Evolução Molecular , Filogenia , Plantas
6.
New Phytol ; 232(3): 1488-1505, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34076270

RESUMO

Despite their key phylogenetic position and their unique biology, hornworts have been widely overlooked. Until recently there was no hornwort model species amenable to systematic experimental investigation. Anthoceros agrestis has been proposed as the model species to study hornwort biology. We have developed an Agrobacterium-mediated method for the stable transformation of A. agrestis, a hornwort model species for which a genetic manipulation technique was not yet available. High transformation efficiency was achieved by using thallus tissue grown under low light conditions. We generated a total of 274 transgenic A. agrestis lines expressing the ß-glucuronidase (GUS), cyan, green, and yellow fluorescent proteins under control of the CaMV 35S promoter and several endogenous promoters. Nuclear and plasma membrane localization with multiple color fluorescent proteins was also confirmed. The transformation technique described here should pave the way for detailed molecular and genetic studies of hornwort biology, providing much needed insight into the molecular mechanisms underlying symbiosis, carbon-concentrating mechanism, RNA editing and land plant evolution in general.


Assuntos
Anthocerotophyta , Embriófitas , Agrobacterium/genética , Glucuronidase , Filogenia , Edição de RNA , Transformação Genética
7.
Microbiol Immunol ; 63(3-4): 89-99, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30817029

RESUMO

In a previous study, 50 of 132 soil samples collected throughout Japan were found to be Leptospira-positive. In the present study, three strains identified in the collected specimens, three, E8, E18 and YH101, were found to be divergent from previously described Leptospira species according to 16S ribosomal RNA gene sequence analysis. These three strains have a helical shape similar to that of typical Leptospira and were not re-isolated from experimental mice inoculated with the cultured strains. Upon 16S ribosomal RNA gene sequence analysis, E8 was found to belong to the intermediate Leptospira species clade and E18 and YH101 to belong to the saprophytic Leptospira species clade. Based on analyses of genome-to-genome distances and average nucleotide identity in silico using whole genome sequences and DNA-DNA hybridization in vitro, these isolates were found to be distinct from previously described Leptospira species. Therefore, these three isolates represent novel species of the genus Leptospira for which the names Leptospira johnsonii sp. nov., (type strain E8 T , = JCM 32515 T = CIP111620 T ), Leptospira ellinghausenii sp. nov., (type strain E18 T , = JCM 32516 T = CIP111618 T ) and Leptospira ryugenii sp. nov., (type strain YH101 T , = JCM 32518 T = CIP111617 T ) are proposed.


Assuntos
Leptospira/classificação , Leptospira/isolamento & purificação , Microbiologia do Solo , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Genoma Bacteriano/genética , Japão , Leptospira/genética , Masculino , Camundongos , Camundongos Transgênicos , Filogenia , RNA Ribossômico 16S/genética , Microbiologia da Água , Sequenciamento Completo do Genoma
8.
Planta ; 247(4): 779-790, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29214446

RESUMO

MAIN CONCLUSION: UGT79B31 encodes flavonol 3- O -glycoside: 2″- O -glucosyltransferase, an enzyme responsible for the terminal modification of pollen-specific flavonols in Petunia hybrida. Flavonoids are known to be involved in pollen fertility in petunia (P. hybrida) and maize (Zea mays). As a first step toward elucidating the role of flavonoids in pollen, we have identified a glycosyltransferase that is responsible for the terminal modification of petunia pollen-specific flavonoids. An in silico search of the petunia transcriptome database revealed four candidate UDP-glycosyltransferase (UGT) genes. UGT79B31 was selected for further analyses based on a correlation between the accumulation pattern of flavonol glycosides in various tissues and organs and the expression profiles of the candidate genes. Arabidopsis ugt79b6 mutants that lacked kaempferol/quercetin 3-O-glucosyl(1 â†’ 2)glucosides, were complemented by transformation with UGT79B31 cDNA under the control of Arabidopsis UGT79B6 promoter, showing that UGT79B31 functions as a flavonol 3-O-glucoside: 2″-O-glucosyltransferase in planta. Recombinant UGT79B31 protein can convert kaempferol 3-O-galactoside/glucoside to kaempferol 3-O-glucosyl(1 â†’ 2)galactoside/glucoside. UGT79B31 prefers flavonol 3-O-galactosides to the 3-O-glucosides and rarely accepted the 3-O-diglycosides as sugar acceptors. UDP-glucose was the preferred sugar donor for UGT79B31. These results indicated that UGT79B31 encodes a flavonoid 3-O-glycoside: 2″-O-glucosyltransferase. Transient expression of UGT79B31 fused to green fluorescent protein (GFP) in Nicotiana benthamiana showed that UGT79B31 protein was localized in the cytosol.


Assuntos
Flavonoides/biossíntese , Glucosiltransferases/metabolismo , Petunia/metabolismo , Pólen/metabolismo , Resinas Vegetais/metabolismo , Clonagem Molecular , Glucosiltransferases/genética , Immunoblotting , Petunia/enzimologia , Petunia/genética , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frações Subcelulares/metabolismo
9.
Microbiol Immunol ; 62(1): 55-59, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29105847

RESUMO

Leptospira were isolated from soil obtained from Hokkaido, the northernmost island, to Okinawa, the southernmost island, of Japan using sulfamethoxazole, trimethoprim, amphotericin B, fosfomycin, and 5- fluorouracil. Fifty of 132 soil samples (37.9%) were culture-positive. On the basis of 16S-rDNA sequences, 12 of the isolated Leptospira were classified into a pathogenic species clade that is closely associated with L. alstonii and L. kmetyi. Nine isolates were classified as intermediate species and were found to be similar to L. licerasiae. Twenty-seven isolates were classified as non-pathogenic species, of which 23 were found to be related to L. wolbachii. Non-pathogenic Leptospira are commonly distributed in environmental soil.


Assuntos
Leptospira/classificação , Leptospira/isolamento & purificação , Microbiologia do Solo , Anfotericina B/farmacologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Fluoruracila/farmacologia , Fosfomicina/farmacologia , Japão , Leptospira/efeitos dos fármacos , Leptospira/genética , Filogenia , Análise de Sequência de DNA , Solo , Sulfametoxazol/farmacologia , Trimetoprima/farmacologia
10.
J Infect Chemother ; 24(10): 828-833, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30057339

RESUMO

Since 2011, Borrelia miyamotoi disease (BMD) has been reported in five countries in the northern hemisphere. The causative agent of BMD is transmitted by Ixodes ticks, which are also vectors of Lyme disease borreliae. In this study, we examined 459 cases of clinically suspected Lyme disease (LD group), and found twelve cases that were seropositive for the glycerophosphodiester phosphodiesterase (GlpQ) antigen derived from B. miyamotoi. The retrospective surveillance revealed that the seroprevalence of anti-GlpQ in the LD group was significantly higher than in a healthy cohort. Seropositive cases were observed from spring through autumn when ticks are active, and the cases were geographically widespread, being found in Hokkaido-Tohoku, Kanto, Chubu, Kinki, and Kyushu-Okinawa regions. Seropositive cases for GlpQ were most frequent in the Chubu region (6.3%) where B. miyamotoi has been found in Ixodes ticks. Out of the twelve cases that were found in the LD group, three cases exhibited concomitant seropositivity to Lyme disease borreliae by western blot assay. This is the first report of serological surveillance for BMD in Japan, and we conclude that BMD occurs nationwide.


Assuntos
Borrelia/imunologia , Doença de Lyme/epidemiologia , Doença de Lyme/imunologia , Febre Recorrente/epidemiologia , Febre Recorrente/imunologia , Adolescente , Adulto , Idoso , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/sangue , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Estudos de Casos e Controles , Criança , Estudos de Coortes , DNA Bacteriano/genética , Feminino , Humanos , Japão/epidemiologia , Doença de Lyme/sangue , Doença de Lyme/diagnóstico , Masculino , Pessoa de Meia-Idade , Diester Fosfórico Hidrolases/sangue , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/imunologia , Febre Recorrente/sangue , Febre Recorrente/diagnóstico , Estudos Retrospectivos , Estudos Soroepidemiológicos
11.
PLoS Genet ; 11(2): e1004980, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25671434

RESUMO

Neofunctionalization following gene duplication is thought to be one of the key drivers in generating evolutionary novelty. A gene duplication in a common ancestor of land plants produced two classes of KNOTTED-like TALE homeobox genes, class I (KNOX1) and class II (KNOX2). KNOX1 genes are linked to tissue proliferation and maintenance of meristematic potentials of flowering plant and moss sporophytes, and modulation of KNOX1 activity is implicated in contributing to leaf shape diversity of flowering plants. While KNOX2 function has been shown to repress the gametophytic (haploid) developmental program during moss sporophyte (diploid) development, little is known about KNOX2 function in flowering plants, hindering syntheses regarding the relationship between two classes of KNOX genes in the context of land plant evolution. Arabidopsis plants harboring loss-of-function KNOX2 alleles exhibit impaired differentiation of all aerial organs and have highly complex leaves, phenocopying gain-of-function KNOX1 alleles. Conversely, gain-of-function KNOX2 alleles in conjunction with a presumptive heterodimeric BELL TALE homeobox partner suppressed SAM activity in Arabidopsis and reduced leaf complexity in the Arabidopsis relative Cardamine hirsuta, reminiscent of loss-of-function KNOX1 alleles. Little evidence was found indicative of epistasis or mutual repression between KNOX1 and KNOX2 genes. KNOX proteins heterodimerize with BELL TALE homeobox proteins to form functional complexes, and contrary to earlier reports based on in vitro and heterologous expression, we find high selectivity between KNOX and BELL partners in vivo. Thus, KNOX2 genes confer opposing activities rather than redundant roles with KNOX1 genes, and together they act to direct the development of all above-ground organs of the Arabidopsis sporophyte. We infer that following the KNOX1/KNOX2 gene duplication in an ancestor of land plants, neofunctionalization led to evolution of antagonistic biochemical activity thereby facilitating the evolution of more complex sporophyte transcriptional networks, providing plasticity for the morphological evolution of land plant body plans.


Assuntos
Arabidopsis/genética , Evolução Molecular , Duplicação Gênica , Proteínas de Homeodomínio/genética , Estágios do Ciclo de Vida/genética , Proteínas de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Cardamine/genética , Cardamine/crescimento & desenvolvimento , Diploide , Regulação da Expressão Gênica de Plantas , Haploidia , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento
12.
Dev Biol ; 419(1): 184-197, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-26808209

RESUMO

Land plant bodies develop from meristems, groups of pluripotent stem cells, which may persist throughout the life of a plant or, alternatively, have a transitory existence. Early diverging land plants exhibit indeterminate (persistent) growth in their haploid gametophytic generation, whereas later diverging lineages exhibit indeterminate growth in their diploid sporophytic generation, raising the question of whether genetic machinery directing meristematic functions was co-opted between generations. Class III HD-Zip (C3HDZ) genes are required for the establishment and maintenance of shoot apical meristems in flowering plants. We demonstrate that in the moss Physcomitrella patens, C3HDZ genes are expressed in transitory meristems in both the gametophytic and sporophytic generations, but not in the persistent shoot meristem of the gametyphyte. Loss-of-function of P. patens C3HDZ was engineered using ectopic expression of miR166, an endogenous regulator of C3HDZ gene activity. Loss of C3HDZ gene function impaired the function of gametophytic transitory meristematic activity but did not compromise the functioning of the persistent shoot apical meristem during the gametophyte generation. These results argue against a wholesale co-option of meristematic gene regulatory networks from the gametophyte to the sporophyte during land plant evolution, instead suggesting that persistent meristems with a single apical cell in P. patens and persistent complex meristems in flowering plants are regulated by different genetic programs.


Assuntos
Bryopsida/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Genes Homeobox , Genes de Plantas , Proteínas de Homeodomínio/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Sequência de Bases , Bryopsida/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Zíper de Leucina/genética , Estágios do Ciclo de Vida , Meristema/citologia , Meristema/metabolismo , Família Multigênica , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , RNA de Plantas/genética , Reprodução , Alinhamento de Sequência , Especificidade da Espécie , Fatores de Transcrição/genética
13.
Development ; 141(8): 1660-70, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24715456

RESUMO

Many differentiated plant cells can dedifferentiate into stem cells, reflecting the remarkable developmental plasticity of plants. In the moss Physcomitrella patens, cells at the wound margin of detached leaves become reprogrammed into stem cells. Here, we report that two paralogous P. patens WUSCHEL-related homeobox 13-like (PpWOX13L) genes, homologs of stem cell regulators in flowering plants, are transiently upregulated and required for the initiation of cell growth during stem cell formation. Concordantly, Δppwox13l deletion mutants fail to upregulate genes encoding homologs of cell wall loosening factors during this process. During the moss life cycle, most of the Δppwox13l mutant zygotes fail to expand and initiate an apical stem cell to form the embryo. Our data show that PpWOX13L genes are required for the initiation of cell growth specifically during stem cell formation, in analogy to WOX stem cell functions in seed plants, but using a different cellular mechanism.


Assuntos
Bryopsida/citologia , Bryopsida/genética , Genes de Plantas/genética , Folhas de Planta/citologia , Proteínas de Plantas/genética , Protoplastos/citologia , Células-Tronco/citologia , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bryopsida/crescimento & desenvolvimento , Proliferação de Células , Parede Celular/genética , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Meristema/citologia , Meristema/crescimento & desenvolvimento , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Regeneração , Células-Tronco/metabolismo , Regulação para Cima/genética , Zigoto/citologia , Zigoto/crescimento & desenvolvimento
14.
Plant Mol Biol ; 92(4-5): 445-456, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27561783

RESUMO

KEY MESSAGE: Flavonoids are important secondary metabolites in plants. Sugar-sugar glycosyltransferases are involved in the final step of flavonoid biosynthesis and contribute to the structural diversity of flavonoids. This manuscript describes the first cloning of a sugar-sugar glucosyltransferase gene in the UGT family that attaches glucose to the 6″-position of sugar bound to a flavonol. The results provide a glimpse on the possible evolution of sugar-sugar glycosyltransferase genes and identify putative amino acids responsible for the recognition of the hydroxyl group of the sugar moiety and specification of sugar. A scheme for the genetic control of flavonol glycoside biosynthesis is proposed. Flavonol glycosides (FGs) are predominant in soybean leaves and they show substantial differences among genotypes. In previous studies, we identified two flavonoid glycoside glycosyltransferase genes that segregated in recombinant inbred lines developed from a cross between cultivars Nezumisaya and Harosoy; one was responsible for the attachment of glucose to the 2″-position of glucose or galactose that is bound to the 3-position of kaempferol and the other was involved in the attachment of glucose to the 6″-position. This study was conducted to clone and characterize the 6″-glucosyltransferase gene. Linkage mapping indicated that the gene was located in the molecular linkage group I (chromosome 20). Based on the genome sequence, we cloned a candidate cDNA, GmF3G6"Gt from Harosoy but the corresponding cDNA could not be amplified by PCR from Nezumisaya. The coding region of GmF3G6″Gt in Harosoy is 1386 bp long encoding 462 amino acids. This gene was not expressed in leaves of Nezumisaya. The GmF3G6″Gt recombinant protein converted UDP-glucose and kaempferol 3-O-glucoside or kaempferol 3-O-galactoside to kaempferol 3-O-glucosyl-(1→6)-glucoside or kaempferol 3-O-glucosyl-(1→6)-galactoside, respectively. These results indicate that GmF3G6″Gt encodes a flavonol 3-O-glucoside/galactoside (1→6) glucosyltransferase and corresponds to the Fg1 gene. GmF3G6″Gt had an amino acid similarity of 82 % with GmF3G6″Rt encoding flavonol 3-O-glucoside/galactoside (1→6) rhamnosyltransferase, suggesting a recent evolutionary divergence of the two genes. This may be the first cloning of a sugar-sugar glucosyltransferase gene in the UGT family that attaches glucose to the 6″-position of sugar bound to a flavonol. A scheme for the control of FG biosynthesis is proposed.


Assuntos
Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glycine max/enzimologia , Glycine max/genética , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Plant J ; 79(5): 769-82, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24916675

RESUMO

Flavonol 3-O-diglucosides with a 1→2 inter-glycosidic linkage are representative pollen-specific flavonols that are widely distributed in plants, but their biosynthetic genes and physiological roles are not well understood. Flavonoid analysis of four Arabidopsis floral organs (pistils, stamens, petals and calyxes) and flowers of wild-type and male sterility 1 (ms1) mutants, which are defective in normal development of pollen and tapetum, showed that kaempferol/quercetin 3-O-ß-d-glucopyranosyl-(1→2)-ß-d-glucopyranosides accumulated in Arabidopsis pollen. Microarray data using wild-type and ms1 mutants, gene expression patterns in various organs, and phylogenetic analysis of UDP-glycosyltransferases (UGTs) suggest that UGT79B6 (At5g54010) is a key modification enzyme for determining pollen-specific flavonol structure. Kaempferol and quercetin 3-O-glucosyl-(1→2)-glucosides were absent from two independent ugt79b6 knockout mutants. Transgenic ugt79b6 mutant lines transformed with the genomic UGT79B6 gene had the same flavonoid profile as wild-type plants. Recombinant UGT79B6 protein converted kaempferol 3-O-glucoside to kaempferol 3-O-glucosyl-(1→2)-glucoside. UGT79B6 recognized 3-O-glucosylated/galactosylated anthocyanins/flavonols but not 3,5- or 3,7-diglycosylated flavonoids, and prefers UDP-glucose, indicating that UGT79B6 encodes flavonoid 3-O-glucoside:2″-O-glucosyltransferase. A UGT79B6-GUS fusion showed that UGT79B6 was localized in tapetum cells and microspores of developing anthers.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/metabolismo , Arabidopsis/química , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/química , Flores/citologia , Flores/enzimologia , Flores/genética , Expressão Gênica , Genes Reporter , Glucosiltransferases/genética , Quempferóis/metabolismo , Monossacarídeos/metabolismo , Mutação , Especificidade de Órgãos , Filogenia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Pólen/química , Pólen/citologia , Pólen/enzimologia , Pólen/genética , Quercetina/metabolismo , Proteínas Recombinantes de Fusão , Especificidade por Substrato , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
16.
Plant J ; 77(3): 367-79, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24274116

RESUMO

The notion that plants use specialized metabolism to protect against environmental stresses needs to be experimentally proven by addressing the question of whether stress tolerance by specialized metabolism is directly due to metabolites such as flavonoids. We report that flavonoids with radical scavenging activity mitigate against oxidative and drought stress in Arabidopsis thaliana. Metabolome and transcriptome profiling and experiments with oxidative and drought stress in wild-type, single overexpressors of MYB12/PFG1 (PRODUCTION OF FLAVONOL GLYCOSIDES1) or MYB75/PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), double overexpressors of MYB12 and PAP1, transparent testa4 (tt4) as a flavonoid-deficient mutant, and flavonoid-deficient MYB12 or PAP1 overexpressing lines (obtained by crossing tt4 and the individual MYB overexpressor) demonstrated that flavonoid overaccumulation was key to enhanced tolerance to such stresses. Antioxidative activity assays using 2,2-diphenyl-1-picrylhydrazyl, methyl viologen, and 3,3'-diaminobenzidine clearly showed that anthocyanin overaccumulation with strong in vitro antioxidative activity mitigated the accumulation of reactive oxygen species in vivo under oxidative and drought stress. These data confirm the usefulness of flavonoids for enhancing both biotic and abiotic stress tolerance in crops.


Assuntos
Antioxidantes/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flavonoides/metabolismo , Fatores de Transcrição/metabolismo , Antocianinas/análise , Antocianinas/química , Antocianinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secas , Flavonoides/análise , Flavonoides/química , Expressão Gênica , Perfilação da Expressão Gênica , Hipocótilo/genética , Hipocótilo/parasitologia , Hipocótilo/fisiologia , Metaboloma , Metabolômica , Mutação , Estresse Oxidativo , Proteínas Associadas a Pancreatite , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/fisiologia , Estresse Fisiológico , Fatores de Transcrição/genética , Transcriptoma
17.
BMC Plant Biol ; 15: 126, 2015 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-26002063

RESUMO

BACKGROUND: Flavonol glycosides (FGs) are major components of soybean leaves and there are substantial differences in FG composition among genotypes. The first objective of this study was to identify genes responsible for FG biosynthesis and to locate them in the soybean genome. The second objective was to clone the candidate genes and to verify their function. Recombinant inbred lines (RILs) were developed from a cross between cultivars Nezumisaya and Harosoy. RESULTS: HPLC comparison with authentic samples suggested that FGs having glucose at the 2″-position of glucose or galactose that is bound to the 3-position of kaempferol were present in Nezumisaya, whereas FGs of Harosoy were devoid of 2″-glucose. Conversely, FGs having glucose at the 6″-position of glucose or galactose that is bound to the 3-position of kaempferol were present in Harosoy, whereas these FGs were absent in Nezumisaya. Genetic analysis suggested that two genes control the pattern of attachment of these sugar moieties in FGs. One of the genes may be responsible for attachment of glucose to the 2″-position, probably encoding for a flavonol 3-O-glucoside/galactoside (1 → 2) glucosyltransferase. Nezumisaya may have a dominant whereas Harosoy may have a recessive allele of the gene. Based on SSR analysis, linkage mapping and genome database survey, we cloned a candidate gene designated as GmF3G2″Gt in the molecular linkage group C2 (chromosome 6). The open reading frame of GmF3G2″Gt is 1380 bp long encoding 459 amino acids with four amino acid substitutions among the cultivars. The GmF3G2″Gt recombinant protein converted kaempferol 3-O-glucoside to kaempferol 3-O-sophoroside. GmF3G2″Gt of Nezumisaya showed a broad activity for kaempferol/quercetin 3-O-glucoside/galactoside derivatives but it did not glucosylate kaempferol 3-O-rhamnosyl-(1 → 4)-[rhamnosyl-(1 → 6)-glucoside] and 3-O-rhamnosyl-(1 → 4)-[glucosyl-(1 → 6)-glucoside]. CONCLUSION: GmF3G2″Gt encodes a flavonol 3-O-glucoside/galactoside (1 → 2) glucosyltransferase and corresponds to the Fg3 gene. GmF3G2″Gt was designated as UGT79B30 by the UGT Nomenclature Committee. Based on substrate specificity of GmF3G2″Gt, 2″-glucosylation of flavonol 3-O-glycoside may be irreconcilable with 4″-glycosylation in soybean leaves.


Assuntos
Mapeamento Cromossômico/métodos , Clonagem Molecular/métodos , Flavonóis/metabolismo , Genes de Plantas , Glucosiltransferases/genética , Glycine max/genética , Glicosídeos/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Flavonóis/análise , Flavonóis/química , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Glicosídeos/análise , Glicosídeos/química , Endogamia , Padrões de Herança/genética , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Recombinação Genética/genética , Especificidade por Substrato
18.
Plant Mol Biol ; 84(3): 287-300, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24072327

RESUMO

There are substantial genotypic differences in the levels of flavonol glycosides (FGs) in soybean leaves. The first objective of this study was to identify and locate genes responsible for FG biosynthesis in the soybean genome. The second objective was to clone and verify the function of these candidate genes. Recombinant inbred lines (RILs) were developed by crossing the Kitakomachi and Koganejiro cultivars. The FGs were separated by high performance liquid chromatography (HPLC) and identified. The FGs of Koganejiro had rhamnose at the 6″-position of the glucose or galactose bound to the 3-position of kaempferol, whereas FGs of Kitakomachi were devoid of rhamnose. Among the 94 RILs, 53 RILs had HPLC peaks classified as Koganejiro type, and 41 RILs had peaks classified as Kitakomachi type. The segregation fitted a 1:1 ratio, suggesting that a single gene controls FG composition. SSR analysis, linkage mapping and genome database survey revealed a candidate gene in the molecular linkage group O (chromosome 10). The coding region of the gene from Koganejiro, designated as GmF3G6″Rt-a, is 1,392 bp long and encodes 464 amino acids, whereas the gene of Kitakomachi, GmF3G6″Rt-b, has a two-base deletion resulting in a truncated polypeptide consisting of 314 amino acids. The recombinant GmF3G6″Rt-a protein converted kaempferol 3-O-glucoside to kaempferol 3-O-rutinoside and utilized 3-O-glucosylated/galactosylated flavonols and UDP-rhamnose as substrates. GmF3G6″Rt-b protein had no activity. These results indicate that GmF3G6″Rt encodes a flavonol 3-O-glucoside (1 â†’ 6) rhamnosyltransferase and it probably corresponds to the Fg2 gene. GmF3G6″Rt was designated as UGT79A6 by the UGT Nomenclature Committee.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Glycine max/genética , Hexosiltransferases/genética , Proteínas de Soja/genética , Sequência de Aminoácidos , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Primers do DNA , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Hexosiltransferases/química , Hexosiltransferases/isolamento & purificação , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Homologia de Sequência de Aminoácidos , Proteínas de Soja/química , Proteínas de Soja/isolamento & purificação
19.
Mol Biol Evol ; 30(10): 2347-65, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23894141

RESUMO

Class IV homeodomain leucine zipper (C4HDZ) genes are plant-specific transcription factors that, based on phenotypes in Arabidopsis thaliana, play an important role in epidermal development. In this study, we sampled all major extant lineages and their closest algal relatives for C4HDZ homologs and phylogenetic analyses result in a gene tree that mirrors land plant evolution with evidence for gene duplications in many lineages, but minimal evidence for gene losses. Our analysis suggests an ancestral C4HDZ gene originated in an algal ancestor of land plants and a single ancestral gene was present in the last common ancestor of land plants. Independent gene duplications are evident within several lineages including mosses, lycophytes, euphyllophytes, seed plants, and, most notably, angiosperms. In recently evolved angiosperm paralogs, we find evidence of pseudogenization via mutations in both coding and regulatory sequences. The increasing complexity of the C4HDZ gene family through the diversification of land plants correlates to increasing complexity in epidermal characters.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Embriófitas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Zíper de Leucina/genética , Estreptófitas/genética , Sequência de Bases , Códon , Embriófitas/classificação , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/classificação , Família Multigênica , Mutação , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequências Reguladoras de Ácido Nucleico , Estreptófitas/classificação , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Curr Biol ; 34(6): R241-R244, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531316

RESUMO

Land plants share several core factors responsible for female gametophyte development, despite their differing structures and developmental programs. New work providing molecular dissection of reproductive phases in non-angiosperm plants is a powerful tool for elucidating the underlying genetic network.


Assuntos
Embriófitas , Redes Reguladoras de Genes , Plantas/genética , Reprodução , Células Germinativas , Embriófitas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA