Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Respir Crit Care Med ; 209(11): 1376-1391, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261723

RESUMO

Rationale: The ubiquitous polyamine spermidine is essential for cell survival and proliferation. One important function of spermidine is to serve as a substrate for hypusination, a posttranslational modification process that occurs exclusively on eukaryotic translation factor 5A (eIF5A) and ensures efficient translation of various gene products. Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive obliteration of the small pulmonary arteries (PAs) caused by excessive proliferation of PA smooth muscle cells (PASMCs) and suppressed apoptosis. Objectives: To characterize the role of hypusine signaling in PAH. Methods: Molecular, genetic, and pharmacological approaches were used both in vitro and in vivo to investigate the role of hypusine signaling in pulmonary vascular remodeling. Measurements and Main Results: Hypusine forming enzymes-deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH)-and hypusinated eukaryotic translation factor 5A are overexpressed in distal PAs and isolated PASMCs from PAH patients and animal models. In vitro, inhibition of DHPS using N1-guanyl-1,7-diaminoheptane or shRNA resulted in a decrease in PAH-PASMC resistance to apoptosis and proliferation. In vivo, inactivation of one allele of Dhps targeted to smooth muscle cells alleviates PAH in mice, and its pharmacological inhibition significantly decreases pulmonary vascular remodeling and improves hemodynamics and cardiac function in two rat models of established PAH. With mass spectrometry, hypusine signaling is shown to promote the expression of a broad array of proteins involved in oxidative phosphorylation, thus supporting the bioenergetic requirements of cell survival and proliferation. Conclusions: These findings support inhibiting hypusine signaling as a potential treatment for PAH.


Assuntos
Hipertensão Arterial Pulmonar , Transdução de Sinais , Remodelação Vascular , Animais , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Ratos , Humanos , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Masculino , Modelos Animais de Doenças , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Camundongos , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A , Proliferação de Células/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/metabolismo , Lisina/análogos & derivados
2.
Am J Respir Cell Mol Biol ; 71(5): 603-616, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39051933

RESUMO

MicroRNA (miR)-155-5p increases in innate and adaptive immune cells in response to IL-13 and is associated with the severity of asthma. However, little is known about its role in airway structural cells. Bronchial epithelial cells (BECs) isolated from healthy donors and patients with severe asthma were stimulated with IL-13. miR-155-5p expression and release were measured by real-time (RT)-PCR in BECs and in their derived exosomes. Modulation of miR-155-5p in BECs was performed using transfection of miR-155-5p inhibitor and mimic. IL-13 receptor α1 (IL-13Rα1), IL-13Rα2, MUC5AC, IL-8, and eotaxin-1 expression was measured by RT-PCR and Western blot analysis. The BEC repair process was assessed by a wound-healing assay. IL-13Rα1 and IL-13Rα2 expression and downstream pathways were evaluated by Western blot analysis. A dual luciferase assay was used to identify miR-155-5p target genes associated with IL-13R signaling. BECs from patients with severe asthma showed increased expression and exosomal release of miR-155-5p at baseline with amplification by IL-13 stimulation. BECs from patients with asthma expressed more IL-13Rα1 and less IL-13Rα2 than those from healthy donors, and IL-13Rα1 but not IL-13Rα2 induced miR-155-5p expression under IL-13 stimulation. miR-155-5p overexpression favored MUC5AC, IL-8, and Eotaxin-1 through the IL-13Rα1/SOCS1/STAT6 pathway while delaying the repair process by downregulating IL-13Rα2/MAPK14/c-Jun/c-fos signaling. The dual luciferase assay confirmed that miR-155-5p modulates both IL-13R pathways by directly targeting SOCS1, c-fos, and MAPK14. miR-155-5p is overexpressed in BECs from patients with severe asthma and regulates IL-13Rα1 and IL-13Rα2 expression and signaling, favoring expression of mucin- and eosinophil-related genes to the detriment of airway repair. These results show that miR-155-5p may contribute to airway epithelial cell dysfunction in patients with severe asthma.


Assuntos
Asma , Células Epiteliais , Subunidade alfa1 de Receptor de Interleucina-13 , Subunidade alfa2 de Receptor de Interleucina-13 , Interleucina-13 , MicroRNAs , Transdução de Sinais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Asma/genética , Asma/metabolismo , Asma/patologia , Células Epiteliais/metabolismo , Subunidade alfa1 de Receptor de Interleucina-13/metabolismo , Subunidade alfa1 de Receptor de Interleucina-13/genética , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Subunidade alfa2 de Receptor de Interleucina-13/genética , Interleucina-13/metabolismo , Masculino , Feminino , Mucina-5AC/metabolismo , Mucina-5AC/genética , Fenótipo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética , Adulto , Pessoa de Meia-Idade , Exossomos/metabolismo , Exossomos/genética , Pulmão/metabolismo , Pulmão/patologia , Regulação da Expressão Gênica , Células Cultivadas , Quimiocina CCL11/metabolismo , Quimiocina CCL11/genética
3.
J Immunol ; 208(5): 1115-1127, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35165166

RESUMO

Purinergic signaling plays a major role in T cell activation leading to IL-2 production and proliferation. However, it is unclear whether purinergic signaling contributes to the differentiation and activation of effector T cells. In this study, we found that the purinergic receptor P2X4 was associated with human Th17 cells but not with Th1 cells. Inhibition of P2X4 receptor with the specific antagonist 5-BDBD and small interfering RNA inhibited the development of Th17 cells and the production of IL-17 by effector Th17 cells stimulated via the CD3/CD28 pathway. Our results showed that P2X4 was required for the expression of retinoic acid-related orphan receptor C, which is the master regulator of Th17 cells. In contrast, inhibition of P2X4 receptor had no effect on Th1 cells and on the production of IFN-γ and it did not affect the expression of the transcription factor T-bet (T-box transcription factor). Furthermore, inhibition of P2X4 receptor reduced the production of IL-17 but not of IFN-γ by effector/memory CD4+ T cells isolated from patients with rheumatoid arthritis. In contrast to P2X4, inhibition of P2X7 and P2Y11 receptors had no effects on Th17 and Th1 cell activation. Finally, treatment with the P2X4 receptor antagonist 5-BDBD reduced the severity of collagen-induced arthritis in mice by inhibiting Th17 cell expansion and activation. Our findings provide novel insights into the role of purinergic signaling in T cell activation and identify a critical role for the purinergic receptor P2X4 in Th17 activation and in autoimmune arthritis.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/imunologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/metabolismo , Células Th17/imunologia , Animais , Artrite Reumatoide/patologia , Benzodiazepinonas/farmacologia , Diferenciação Celular/imunologia , Células Cultivadas , Humanos , Memória Imunológica/imunologia , Interferon gama/biossíntese , Interleucina-17/biossíntese , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Receptores Nucleares Órfãos , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Purinérgicos P2X4/genética , Proteínas com Domínio T/biossíntese , Células Th1/citologia , Células Th1/imunologia , Células Th17/citologia
4.
Gut ; 71(1): 43-54, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33452178

RESUMO

OBJECTIVE: Nucleotides are danger signals that activate inflammatory responses via binding P2 receptors. The nucleoside triphosphate diphosphohydrolase-8 (NTPDase8) is an ectonucleotidase that hydrolyses P2 receptor ligands. We investigated the role of NTPDase8 in intestinal inflammation. DESIGN: We generated NTPDase8-deficient (Entpd8-/-) mice to define the role of NTPDase8 in the dextran sodium sulfate (DSS) colitis model. To assess inflammation, colons were collected and analysed by histopathology, reverse transcriptase-quantitative real-time PCR (RT-qPCR) and immunohistochemistry. P2 receptor expression was analysed by RT-qPCR on primary intestinal epithelium and NTPDase8 activity by histochemistry. The role of intestinal P2Y6 receptors was assessed by bone marrow transplantation experiments and with a P2Y6 receptor antagonist. RESULTS: NTPDase8 is the dominant enzyme responsible for the hydrolysis of nucleotides in the lumen of the colon. Compared with wild-type (WT) control mice, the colon of Entpd8-/- mice treated with DSS displayed significantly more histological damage, immune cell infiltration, apoptosis and increased expression of several proinflammatory cytokines. P2Y6 was the dominant P2Y receptor expressed at the mRNA level by the colonic epithelia. Irradiated P2ry6-/- mice transplanted with WT bone marrow were fully protected from DSS-induced intestinal inflammation. In agreement, the daily intrarectal injection of a P2Y6 antagonist protected mice from DSS-induced intestinal inflammation in a dose-dependent manner. Finally, human intestinal epithelial cells express NTPDase8 and P2Y6 similarly as in mice. CONCLUSION: NTPDase8 protects the intestine from inflammation most probably by limiting the activation of P2Y6 receptors in colonic epithelial cells. This may provide a novel therapeutic strategy for the treatment of inflammatory bowel disease.


Assuntos
Adenosina Trifosfatases/metabolismo , Colite/metabolismo , Isotiocianatos/farmacologia , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Tioureia/análogos & derivados , Adenosina Trifosfatases/genética , Animais , Apoptose , Transplante de Medula Óssea , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Humanos , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tioureia/farmacologia
5.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992862

RESUMO

We have generated polyclonal and monoclonal antibodies by genetic immunization over the last two decades. In this paper, we present our most successful methodology acquired over these years and present the animals in which we obtained the highest rates of success. The technique presented is convenient, easy, affordable, and generates antibodies against mammalian proteins in their native form. This protocol requires neither expensive equipment, such as a gene gun, nor sophisticated techniques such as the conjugation of gold microspheres, electroporation, or surgery to inject in lymph nodes. The protocol presented uses simply the purified plasmid expressing the protein of interest under a strong promoter, which is injected at intramuscular and intradermal sites. This technique was tested in five species. Guinea pigs were the animals of choice for the production of polyclonal antibodies. Monoclonal antibodies could be generated in mice by giving, as a last injection, a suspension of transfected cells. The antibodies detected their antigens in their native forms. They were highly specific with very low non-specific background levels, as assessed by immune-blots, immunocytochemistry, immunohistochemistry and flow cytometry. We present herein a detailed and simple procedure to successfully raise specific antibodies against native proteins.


Assuntos
Anticorpos Monoclonais/biossíntese , DNA Complementar/imunologia , Proteínas/imunologia , Animais , Células COS , Chlorocebus aethiops , Cricetinae , Feminino , Cobaias , Células HEK293 , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Ratos , Ratos Sprague-Dawley
7.
Purinergic Signal ; 13(3): 293-304, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28409324

RESUMO

Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) is an ectonucleotidase that modulates P2 receptor activation by hydrolyzing ATP to ADP. In rodents, NTPDase2 is expressed by several specialized cell types such as vascular adventitial cells, neuroglial cells, hepatic portal fibroblasts, gustatory type I cells, and cells within the connective tissues of reproductive and gastrointestinal organs. Much less is known regarding the expression and function of NTPDase2 in humans. Here, we developed specific research tools to study human NTPDase2. We generated mouse monoclonal antibodies and rabbit polyclonal antibodies specific to human NTPDase2 and validated their specificity by western blot, immunocytochemistry, immunohistochemistry, and flow cytometry. In addition, one monoclonal antibody named hN2-D5 s specifically inhibits human NTPDase2 enzymatic activity but not mouse nor rat NTPDase2. Using these antibodies, NTPDase2 immunoreactivity was detected on glial cells of the human enteric nervous system suggesting a function of the enzyme in intestinal motility. In conclusion, the new antibodies described in our work are novel tools that will enhance future studies of NTPDase2 expression and function in humans.


Assuntos
Adenosina Trifosfatases/imunologia , Anticorpos/imunologia , Apirase/imunologia , Adenosina Trifosfatases/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Antígenos CD/imunologia , Apirase/metabolismo , Humanos , Imuno-Histoquímica/métodos , Camundongos Endogâmicos BALB C , Neuroglia/metabolismo , Transdução de Sinais/fisiologia
8.
Biochim Biophys Acta Mol Basis Dis ; 1865(10): 2595-2605, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271845

RESUMO

Extracellular nucleotides are released as constitutive danger signals by various cell types and activate nucleotide (P2) receptors such as P2Y6 receptor. P2Y6 activation on monocytes induces the secretion of the chemokine CXCL8 which may propagate intestinal inflammation. Also, P2Y6 expression is increased in infiltrating T cells of Crohn's disease patients. As inflammatory bowel disease (IBD) is associated with immune cell recruitment, we hypothesised that P2Y6 would participate to the establishment of inflammation in this disease. To address this, we used P2Y6 deficient (P2ry6--/-) mice in the dextran sodium sulfate (DSS) murine model of IBD. In disagreement with our hypothesis, P2Y6 deficient mice were more susceptible to inflammation induced by DSS than WT mice. DSS treated-P2ry6-/- mice showed increased histological damage and increased neutrophil and macrophage infiltration that correlated with increased mRNA levels of the chemokines KC and MCP-1. DSS treated-P2ry6-/- mice exhibited also higher levels of Th17/Th1 lymphocytes in their colon which correlated with increased levels of IFN-γ and IL-17A in the sera as well as increased mRNA levels of IFN-γ, IL-17A, IL-6, IL-23 and IL-1ß in P2ry6-/- colons. This inflammation was also accompanied by a decreased cell proliferation and goblet cell number. Importantly, injection of anti-IL-17 intraperitoneally partially protected P2ry6-/- mice from DSS-induced colitis. Taken together, in the absence of P2Y6, an exacerbated intestinal inflammation to DSS was observed which correlated with increased recruitment of Th17/Th1 lymphocytes. These data suggest a protective role of P2Y6 expressed on leukocytes in intestinal inflammation.


Assuntos
Inflamação/metabolismo , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Células Th17/metabolismo , Animais , Proliferação de Células , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colo/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Feminino , Inflamação/induzido quimicamente , Inflamação/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Interleucina-8/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/metabolismo , Células Th17/imunologia , Transcriptoma
9.
Sci Rep ; 9(1): 14661, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601878

RESUMO

Extracellular vesicles (EVs) are involved in cell-to-cell communication and modulation of numerous physiological and pathological processes. EVs are found in large quantities in milk and contain several inflammation- and immunity-modulating proteins and microRNAs, through which they exert beneficial effects in several inflammatory disease models. Here, we investigated the effects of two EV subsets, concentrated from commercial cow's milk, on a murine model of colitis induced with dextran sodium sulfate (DSS). P35K EVs, isolated by ultracentrifugation at 35,000 g, and P100K EVs, isolated at 100,000 g, were previously characterized and administered by gavage to healthy and DSS-treated mice. P35K EVs and, to a lesser extent, P100K EVs improved several outcomes associated to DSS-induced colitis, modulated the gut microbiota, restored intestinal impermeability and replenished mucin secretion. Also, P35K EVs modulated innate immunity, while P100K EVs decreased inflammation through the downregulation of colitis-associated microRNAs, especially miR-125b, associated with a higher expression of the NFκB inhibitor TNFAIP3 (A20). These results suggest that different milk EV subsets may improve colitis outcomes through different, and possibly complementary, mechanisms. Further unveiling of these mechanisms might offer new opportunities for improving the life of patients with colitis and be of importance for milk processing, infant milk formulation and general public health.


Assuntos
Colite/dietoterapia , Suplementos Nutricionais , Vesículas Extracelulares/imunologia , Mucosa Intestinal/imunologia , Leite/citologia , Animais , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Microbioma Gastrointestinal/imunologia , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Leite/imunologia , Mucinas/metabolismo , Ultracentrifugação
10.
Front Pharmacol ; 9: 149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541027

RESUMO

In this study, we investigated the role of extracellular nucleotides in chemokine (KC, MIP-2, MCP-1, and CXCL10) expression and secretion by murine primary intestinal epithelial cells (IECs) with a focus on P2Y6 receptors. qRT-PCR experiments showed that P2Y6 was the dominant nucleotide receptor expressed in mouse IEC. In addition, the P2Y6 ligand UDP induced expression and secretion of CXCL10. For the other studies, we took advantage of mice deficient in P2Y6 (P2ry6-/-). Similar expression levels of P2Y1, P2Y2, P2X2, P2X4, and A2A were detected in P2ry6-/- and WT IEC. Agonists of TLR3 (poly(I:C)), TLR4 (LPS), P2Y1, and P2Y2 increased the expression and secretion of CXCL10 more prominently in P2ry6-/- IEC than in WT IEC. CXCL10 expression and secretion induced by poly(I:C) in both P2ry6-/- and WT IEC were inhibited by general P2 antagonists (suramin and Reactive-Blue-2), by apyrase, and by specific antagonists of P2Y1, P2Y2, P2Y6 (only in WT), and P2X4. Neither adenosine nor an A2A antagonist had an effect on CXCL10 expression and secretion. Macrophage chemotaxis was induced by the supernatant of poly(I:C)-treated IEC which was consistent with the level of CXCL10 secreted. Finally, the non-nucleotide agonist FGF2 induced MMP9 mRNA expression also at a higher level in P2ry6-/- IEC than in WT IEC. In conclusion, extracellular nucleotides regulate CXCL10 expression and secretion by IEC. In the absence of P2Y6, these effects are modulated by other P2 receptors also present on IEC. These data suggest that the presence of P2Y6 regulates chemokine secretion and may also regulate IEC homeostasis.

11.
Eng Life Sci ; 18(6): 359-367, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32624916

RESUMO

An indiscriminate use of antibiotics in humans and animals has led to the widespread selection of antibiotic-resistance, thus constricting the use of antibiotics. A possible solution to counter this problem could be to develop alternatives that can boost the host immunity, thus reducing the quantity and frequency of antibiotic use. In this work, for the first time, citric acid and laccase were used as extracellular inducers of melanin production in yeast cells and human cell lines. It is proposed that the formulation of laccase and citric acid together could further promote melatonin-stimulated, melanocyte-derived melanin production. Melanization as a probe of immunity described in this study, is an easy and a rapid test compared to other immunity tests and it allows performing statistical analyses. The results showed the synergistic effect of citric acid and laccase on melanin production by yeast cells, with significant statistical differences compared to all other tested conditions (p: 0.0005-0.005). Laccase and citric acid together boosted melanin production after 8 days of incubation. An increase in melanin production by two human colon cells lines (Cacao-2/15 and HT-29) was observed on supplementation with both laccase and citric acid in the cell growth medium. Produced melanin showed antimicrobial properties similar to antibiotics. Therefore, a formulation with citric acid and laccase may prove to be an excellent alternative to reduce the antibiotic use in human and animal subjects.

12.
Peptides ; 93: 33-43, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28499840

RESUMO

We investigated the effect of synthetic antimicrobial decapeptide KSL-W (KKVVFWVKFK) on normal human gingival fibroblast growth, migration, collagen gel contraction, and α-smooth muscle actin protein expression. Results show that in addition to promoting fibroblast adhesion by increasing F-actin production, peptide KSL-W promoted cell growth by increasing the S and G2/M cell cycle phases, and enhanced the secretion of metalloproteinase (MMP)-1 and MMP-2 by upregulating MMP inhibitors, such as tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in fibroblasts. An in vitro wound healing assay confirmed that peptide KSL-W promoted fibroblast migration and contraction of a collagen gel matrix. We also demonstrated a high expression of α-smooth muscle actin by gingival fibroblasts being exposed to KSL-W. This work shows that peptide KSL-W enhances gingival fibroblast growth, migration, and metalloproteinase secretion, and the expression of α-smooth muscle actin, thus promoting wound healing.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Gengiva/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Actinas/metabolismo , Análise de Variância , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Gengiva/citologia , Gengiva/metabolismo , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Cultura Primária de Células , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Regulação para Cima
13.
Front Pharmacol ; 8: 115, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337144

RESUMO

The ectonucleotidase nucleoside triphosphate diphosphohydrolase-8 (NTPDase8) is the last member of the Ecto-NTPDase family to be discovered and characterized. It is a transmembrane protein which regulates the concentration of the agonists of P1 and P2 receptors at the cell surface. The functions of the enzyme are still not known partly due to the lack of specific tools such as antibodies. In this work, guinea pig polyclonal antibodies against mouse NTPDase8 and mouse monoclonal antibodies against human NTPDase8 have been generated and characterized. For the production of antibodies against mouse NTPDase8 several techniques have been tried. Several peptide antigens in several hosts (rabbit, rat, hamster, and guinea pig) failed to give a positive reaction suggesting that NTPDase8 is poorly immunogenic. In this study, we describe the successful process that led to anti-mouse NTPDase8, namely the cDNA immunization technique. Monoclonal antibodies to human NTPDase8 were also obtained by cDNA immunization followed by a final injection with transfected human embryonic kidney (HEK 293T) cells expressing human NTPDase8. The specificity of these antibodies was evaluated by Western blot, immunocytochemistry, immunohistochemistry and flow cytometry. In contrast, all commercial antibodies to NTPDase8 peptides that we have tested failed to give a specific positive signal against the expressed NTPDase8 protein when used to probe Western blots. In addition, immunohistochemistry experiments confirmed the presence of NTPDase8 in mouse liver canaliculi. The tools generated in this work will help characterize NTPDase8 localization and function in future studies and its contribution to the modulation of P1 and P2 receptor activation.

14.
Br J Pharmacol ; 169(1): 179-96, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23425137

RESUMO

BACKGROUND AND PURPOSE: Ectonucleotidases control extracellular nucleotide levels and consequently, their (patho)physiological responses. Among these enzymes, nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), -2, -3 and -8 are the major ectonucleotidases responsible for nucleotide hydrolysis at the cell surface under physiological conditions, and NTPDase1 is predominantly located at the surface of vascular endothelial cells and leukocytes. Efficacious inhibitors of NTPDase1 are required to modulate responses induced by nucleotides in a number of pathological situations such as thrombosis, inflammation and cancer. EXPERIMENTAL APPROACH: Here, we present the synthesis and enzymatic characterization of five 8-BuS-adenine nucleotide derivatives as potent and selective inhibitors of NTPDase1. KEY RESULTS: The compounds 8-BuS-AMP, 8-BuS-ADP and 8-BuS-ATP inhibit recombinant human and mouse NTPDase1 by mixed type inhibition, predominantly competitive with Ki values <1 µM. In contrast to 8-BuS-ATP which could be hydrolyzed by other NTPDases, the other BuS derivatives were resistant to hydrolysis by either NTPDase1, -2, -3 or -8. 8-BuS-AMP and 8-BuS-ADP were the most potent and selective inhibitors of NTPDase1 expressed in human umbilical vein endothelial cells as well as in situ in human and mouse tissues. As expected, as a result of their inhibition of recombinant human NTPDase1, 8-BuS-AMP and 8-BuS-ADP impaired the ability of this enzyme to block platelet aggregation. Importantly, neither of these two inhibitors triggered platelet aggregation nor prevented ADP-induced platelet aggregation, in support of their inactivity towards P2Y1 and P2Y12 receptors. CONCLUSIONS AND IMPLICATIONS: The 8-BuS-AMP and 8-BuS-ADP have therefore potential to serve as drugs for the treatment of pathologies regulated by NTPDase1.


Assuntos
Difosfato de Adenosina/farmacologia , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Apirase/antagonistas & inibidores , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/síntese química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/síntese química , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/síntese química , Animais , Antígenos CD , Células COS , Chlorocebus aethiops , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Agregação Plaquetária/efeitos dos fármacos , Ratos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA