Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nucleic Acids Res ; 39(14): 6056-68, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21493686

RESUMO

Although patterns of somatic alterations have been reported for tumor genomes, little is known on how they compare with alterations present in non-tumor genomes. A comparison of the two would be crucial to better characterize the genetic alterations driving tumorigenesis. We sequenced the genomes of a lymphoblastoid (HCC1954BL) and a breast tumor (HCC1954) cell line derived from the same patient and compared the somatic alterations present in both. The lymphoblastoid genome presents a comparable number and similar spectrum of nucleotide substitutions to that found in the tumor genome. However, a significant difference in the ratio of non-synonymous to synonymous substitutions was observed between both genomes (P = 0.031). Protein-protein interaction analysis revealed that mutations in the tumor genome preferentially affect hub-genes (P = 0.0017) and are co-selected to present synergistic functions (P < 0.0001). KEGG analysis showed that in the tumor genome most mutated genes were organized into signaling pathways related to tumorigenesis. No such organization or synergy was observed in the lymphoblastoid genome. Our results indicate that endogenous mutagens and replication errors can generate the overall number of mutations required to drive tumorigenesis and that it is the combination rather than the frequency of mutations that is crucial to complete tumorigenic transformation.


Assuntos
Neoplasias da Mama/genética , Variação Genética , Genoma Humano , Linhagem Celular Transformada , Linhagem Celular Tumoral , Aberrações Cromossômicas , Feminino , Humanos , Linfócitos , Pessoa de Meia-Idade , Mutação , Mutação Puntual , Mapeamento de Interação de Proteínas , Análise de Sequência de DNA
2.
Oncogene ; 23(7): 1481-8, 2004 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-14661055

RESUMO

Altered cell adhesion is causally involved in tumor progression, and the identification of novel adhesion molecules altered in tumors is crucial for our understanding of tumor biology and for the development of new prognostic and therapeutic strategies. Here, we provide evidence for the epigenetic downregulation in breast tumors of the A Desintegrin And Metalloprotease domain 23 gene (ADAM 23), a member of a new family of surface molecules with roles in cell-cell adhesion and/or cell-matrix interactions. We examined the mRNA expression and methylation status of the 5' upstream region of the ADAM23 gene in different breast tumor cell lines as well as in primary breast tumors. We found ADAM23 5' hypermethylation in eight out of 12 (66.7%) tumor cell lines and in nine out of 13 (69.2%) primary tumors. Promoter hypermethylation was strongly associated with reductions in both mRNA and protein expression, with a threshold of 40-60% of modified CpG dinucleotides being required for the complete silencing of ADAM23 mRNA expression. Treatment of MCF-7 and SKBR-3 cell lines with 5'-Aza-2'-deoxycytidine led to a reactivation of ADAM23 mRNA expression and a marked decrease in the methylation level. It is worth noting that primary breast tumors with a more advanced grade showed a higher degree of methylation, suggesting that the adhesion molecule ADAM23 may be downregulated during the progression of breast cancer. Oncogene (2004) 23, 1481-1488. doi:10.1038/sj.onc.1207263 Published online 8 December 2003


Assuntos
Neoplasias da Mama/metabolismo , Desintegrinas/genética , Epigênese Genética/fisiologia , Inativação Gênica/fisiologia , Metaloendopeptidases/genética , Proteínas do Tecido Nervoso/genética , Proteínas ADAM , Metilação de DNA , Desintegrinas/metabolismo , Regulação para Baixo , Feminino , Humanos , Metaloendopeptidases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo
3.
PLoS One ; 10(9): e0139037, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413773

RESUMO

In order to establish new infections HIV-1 particles need to attach to receptors expressed on the cellular surface. HIV-1 particles interact with a cell membrane receptor known as CD4 and subsequently with another cell membrane molecule known as a co-receptor. Two major different co-receptors have been identified: C-C chemokine Receptor type 5 (CCR5) and C-X-C chemokine Receptor type 4 (CXCR4) Previous reports have demonstrated cellular modifications upon HIV-1 binding to its co-receptors including gene expression modulations. Here we investigated the effect of viral binding to either CCR5 or CXCR4 co-receptors on viral diversity after a single round of reverse transcription. CCR5 and CXCR4 pseudotyped viruses were used to infect non-stimulated and stimulated PBMCs and purified CD4 positive cells. We adopted the SOLiD methodology to sequence virtually the entire proviral DNA from all experimental infections. Infections with CCR5 and CXCR4 pseudotyped virus resulted in different patterns of genetic diversification. CCR5 virus infections produced extensive proviral diversity while in CXCR4 infections a more localized substitution process was observed. In addition, we present pioneering results of a recently developed method for the analysis of SOLiD generated sequencing data applicable to the study of viral quasi-species. Our findings demonstrate the feasibility of viral quasi-species evaluation by NGS methodologies. We presented for the first time strong evidence for a host cell driving mechanism acting on the HIV-1 genetic variability under the control of co-receptor stimulation. Additional investigations are needed to further clarify this question, which is relevant to viral diversification process and consequent disease progression.


Assuntos
DNA Viral/genética , HIV-1/genética , Mutação/genética , Provírus/genética , Tropismo/genética , Substituição de Aminoácidos , Linfócitos T CD4-Positivos/imunologia , Códon/genética , Eletroforese em Gel de Ágar , Citometria de Fluxo , Infecções por HIV/imunologia , Infecções por HIV/virologia , Células HeLa , Humanos , Nucleotídeos/genética , Fases de Leitura Aberta/genética , Receptores CCR5/metabolismo , Análise de Sequência de DNA , Estatística como Assunto
4.
Cancer Genet ; 208(6): 319-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25963525

RESUMO

Neoadjuvant chemoradiotherapy (nCRT) may lead to complete tumor regression in rectal cancer patients. Prediction of complete response to nCRT may allow a personalized management of rectal cancer and spare patients from unnecessary radical total mesorectal excision with or without sphincter preservation. To identify a gene expression signature capable of predicting complete pathological response (pCR) to nCRT, we performed a gene expression analysis in 25 pretreatment biopsies from patients who underwent 5FU-based nCRT using RNA-Seq. A supervised learning algorithm was used to identify expression signatures capable of predicting pCR, and the predictive value of these signatures was validated using independent samples. We also evaluated the utility of previously published signatures in predicting complete response in our cohort. We identified 27 differentially expressed genes between patients with pCR and patients with incomplete responses to nCRT. Predictive gene signatures using subsets of these 27 differentially expressed genes peaked at 81.8% accuracy. However, signatures with the highest sensitivity showed poor specificity, and vice-versa, when applied in an independent set of patients. Testing previously published signatures on our cohort also showed poor predictive value. Our results indicate that currently available predictive signatures are highly dependent on the sample set from which they are derived, and their accuracy is not superior to current imaging and clinical parameters used to assess response to nCRT and guide surgical intervention.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/terapia , Quimiorradioterapia , Terapia Neoadjuvante , Neoplasias Retais/genética , Neoplasias Retais/terapia , Feminino , Fluoruracila/uso terapêutico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma , Resultado do Tratamento
5.
Gene ; 310: 49-57, 2003 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-12801632

RESUMO

We applied a systematic bioinformatics approach, followed by careful manual inspection and experimental validation to identify additional expressed sequences located at the Hereditary Prostate Cancer Region (HPC1) between D1S2818 and D1S1642 on chromosome 1q25. All transcripts already described for the 1q25 region were identified and we were able to define 11 additional expressed sequences within this region (three full-length cDNA clone sequences and eight ESTs), increasing the total number of gene count in this region by 38%. Five out of the 11 expressed sequences identified were shown to be expressed in prostate tissue and thus represent novel disease gene candidates for the HPC1 region. Here, we report a detailed characterization of these five novel disease gene candidates, their expression pattern in various tissues, their genomic organization and functional annotation. Two candidates (RGSL1 and RGSL2) correspond to novel members of the RGS family, which is involved in the regulation of G-protein signaling. RGSL1 and RGLS2 expression was detected by real-time polymerase chain reaction in normal prostate tissue, but could not be detected in prostate tumor cell lines, suggesting they might have a role in prostate cancer.


Assuntos
Cromossomos Humanos Par 1/genética , Neoplasias da Próstata/genética , Proteínas/genética , Proteínas RGS/genética , Mapeamento Cromossômico , DNA Complementar/química , DNA Complementar/genética , Bases de Dados de Ácidos Nucleicos , Etiquetas de Sequências Expressas , Humanos , Masculino , Repetições de Microssatélites , Dados de Sequência Molecular , Neoplasias da Próstata/patologia , Análise de Sequência de DNA , Transcrição Gênica/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA