Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 83: 35-43, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26319366

RESUMO

The external granule layer (EGL) is a proliferative region that produces over 90% of the neurons in the cerebellum but can also malignantly transform into a cerebellar tumor called the medulloblastoma (the most common malignant brain tumor in children). Current dogma considers Hedgehog stimulation a potent proliferative signal for EGL neural progenitor cells (NPCs) and medulloblastomas. However, the Hedgehog pathway also acts as a survival signal in the neural tube where it regulates dorsoventral patterning by controlling NPC apoptosis. Here we show that Hedgehog stimulation is also a potent survival signal in the EGL and medulloblastomas that produces a massive apoptotic response within hours of signal loss in mice. This toxicity can be produced by numerous Hedgehog antagonists (vismodegib, cyclopamine, and jervine) and is Bax/Bak dependent but p53 independent. Finally, since glucocorticoids can also induce EGL and medulloblastoma apoptosis, we show that Hedgehog's effects on apoptosis can occur independent of glucocorticoid stimulation. This effect may play a major role in cerebellar development by directing where EGL proliferation occurs thereby morphologically sculpting growth. It may also be a previously unknown major therapeutic effect of Hedgehog antagonists during medulloblastoma therapy. Results are discussed in terms of their implications for both cerebellar development and medulloblastoma treatment.


Assuntos
Apoptose , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Proteínas Hedgehog/fisiologia , Meduloblastoma/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Caspase 3/metabolismo , Fluocinolona Acetonida/administração & dosagem , Fluocinolona Acetonida/análogos & derivados , Fluocinolona Acetonida/metabolismo , Genes p53 , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
2.
J Matern Fetal Neonatal Med ; 30(22): 2734-2741, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27924651

RESUMO

OBJECTIVES: Caffeine (CAF) and sedative/anesthetic drugs (SADs) are often coadministered to premature infants in the neonatal intensive care unit (NICU). While SAD neurotoxicity in the developing brain is well established, it is not fully clear whether CAF interacts with SADs and whether this interaction is detrimental. Using a mouse model of prematurity, we hypothesized that CAF would increase apoptotic neurotoxicity when coadministered with SADs. METHODS: Postnatal day 3 mice were treated with vehicle or 80 mg/kg CAF prior to challenge with 6 mg/kg midazolam, 40 mg/kg ketamine, or 40 µg/kg fentanyl. Six hours later, pups were sacrificed for activated caspase 3 (AC3) immunohistochemistry, and number of AC3 positive cells per mm3 throughout neocortex, hippocampus, caudate, thalamus, and colliculi was analyzed. RESULTS: CAF caused a statistically significant increase in AC3 positive cells when coadministered with midazolam (p = 0.002), ketamine (p = 0.014), or fentanyl (p < 0.001). Our composite dataset suggests that the addition of CAF to these SADs has a supra-additive effect, causing more neurotoxicity than expected. CONCLUSIONS: CAF may augment the neurotoxic action of SADs indicated for neonatal sedation/anesthesia in the NICU by triggering widespread apoptosis in the developing brains of premature infants.


Assuntos
Anestésicos/efeitos adversos , Apoptose/efeitos dos fármacos , Cafeína/efeitos adversos , Hipnóticos e Sedativos/efeitos adversos , Neurônios/efeitos dos fármacos , Nascimento Prematuro/patologia , Anestésicos/administração & dosagem , Animais , Animais Recém-Nascidos , Cafeína/administração & dosagem , Modelos Animais de Doenças , Feminino , Humanos , Hipnóticos e Sedativos/administração & dosagem , Camundongos , Camundongos Endogâmicos ICR , Neurônios/fisiologia , Síndromes Neurotóxicas/patologia , Gravidez , Nascimento Prematuro/tratamento farmacológico , Nascimento Prematuro/psicologia , Distribuição Aleatória
3.
J Matern Fetal Neonatal Med ; 30(18): 2156-2162, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27677376

RESUMO

OBJECTIVES: Glucocorticoids (GCs) are used to improve respiratory mechanics in preterm infants despite clinical evidence linking neonatal GC therapy to cerebellar pathology. In developing mouse cerebellum, the GC dexamethasone (DEX) causes rapid GC-induced neural progenitor cell apoptosis (GINA). Focusing on pharmacological neuroprotection strategies, we investigated whether dexmedetomidine (DMT) protects against GINA. METHODS: Neonatal mice were pretreated with DMT prior to DEX challenge. Additionally, we tested clonidine and yohimbine in vivo to determine mechanism of DMT neuroprotection. For in vitro studies, cerebellar neural progenitor cells were pretreated with DMT before DEX challenge. RESULTS: In vivo, DMT attenuated GINA at 1 µg/kg and above, p < 0.0001. Clonidine significantly attenuated GINA, p < 0.0001, while yohimbine reversed DMT neuroprotection, p < 0.0001, suggesting DMT neuroprotection is likely mediated via adrenergic signaling. In vitro, DMT neuroprotection was achieved at 10 µM and above, p < 0.001, indicating DMT rescue is cell autonomous. CONCLUSIONS: DMT affords dose-dependent neuroprotection from GINA at clinically relevant doses, an effect that is cell autonomous and likely mediated by α2 adrenergic receptor agonism. DMT co-administration with GCs may be an effective strategy to protect the neonatal brain from GINA while retaining the beneficial effects of GCs on respiratory mechanics.


Assuntos
Apoptose/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Dexmedetomidina/farmacologia , Glucocorticoides/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Células , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos ICR , Distribuição Aleatória , Respiração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA