Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 2): 132257, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729492

RESUMO

Low-density lipoprotein (LDL) transports cholesterol to various tissues via the blood. Glycation of LDL occurs during hyperglycemic condition which is characterised by persistently high blood glucose level. Circulating erythrocytes can come in direct contact with glycated LDL (G-LDL). The objective of this study was to investigate the effect of G-LDL on human erythrocytes, specifically on hemoglobin, intracellular generation of reactive species and the antioxidant defence system. Isolated erythrocytes were incubated with G-LDL (3 and 6 mg/ml) and native LDL (6 mg/ml) at 37 °C for 24 h. Native LDL and G-LDL untreated erythrocytes were similarly incubated at 37 °C and served as control. G-LDL treatment increased hemolysis compared to control and native LDL-treated erythrocytes. Incubation of erythrocytes with G-LDL led to an increase in protein oxidation and lipid peroxidation while greatly decreasing the total sulfhydryl content. It also significantly enhanced hemoglobin oxidation, heme degradation, and the release of free iron moiety. Treatment with G-LDL led to an appreciable increase in the production of reactive oxygen and nitrogen species. The antioxidant power and activities of major antioxidant enzymes were drastically reduced, while critical membrane-bound enzymes were inhibited. The surface morphology of G-LDL-treated erythrocytes was altered leading to the formation of echinocytes. Importantly, treatment of erythrocytes with native LDL did not significantly affect the above-mentioned parameters and values were similar to the corresponding controls. Thus, G-LDL is cytotoxic to human erythrocytes and causes oxidative damage to cell components. This can reduce the oxygen-transporting ability of blood and also result in red cell senescence and anemia.


Assuntos
Eritrócitos , Hemoglobinas , Hemólise , Lipoproteínas LDL , Oxirredução , Espécies Reativas de Oxigênio , Humanos , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Hemoglobinas/metabolismo , Hemólise/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Antioxidantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Heme/metabolismo , Heme/farmacologia , Proteínas Glicadas
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121958, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36244155

RESUMO

Human low-density lipoprotein (LDL) is known to have a role in coronary artery diseases when it undergoes modification due to hyperglycaemic conditions. Plant products like crocin play an essential role in protecting against oxidative stress and in the production of advanced glycation end-products (A.G.E.s). In this study, the anti-glycating effect of crocin was analyzed using various biochemical, spectroscopic, and in silico approaches. Glycation-mediated oxidative stress was confirmed by nitroblue tetrazolium, carbonyl content, and lipid peroxidation assays, and it was efficiently protected by crocin in a concentration-dependent manner. A.N.S. fluorescence, thioflavin T (ThT) assay, and electron microscopy confirmed that the structural changes in LDL during glycation lead to the formation of fibrillar aggregates, which can be minimized by crocin treatment. Moreover, secondary structural perturbations in LDL were observed using circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), where crocin was found to prevent the loss of secondary structure in glycated LDL. Spectroscopic studies like U.V. absorbance, fluorescence spectroscopy, CD, FTIR, and fluorescence resonance energy transfer (FRET) provided insights into the interaction mechanism between LDL and crocin. Molecular docking supports these results with a highly negative binding energy of -10.3 kcal/mol, suggesting the formation of a stable ldl-crocin complex. Our study indicates that crocin may be a potent protective agent against coronary artery diseases by limiting the glycation of LDL in people with such disorders.


Assuntos
Doença da Artéria Coronariana , Humanos , Simulação de Acoplamento Molecular , Carotenoides/farmacologia , Produtos Finais de Glicação Avançada/química , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo
3.
Int J Biol Macromol ; 238: 124151, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36963546

RESUMO

Glycation of human low-density protein (LDL) has an essential contribution to cardiovascular diseases. Natural compounds like rutin have been extensively studied in preventing glycation-induced oxidative stress. This study examined rutin's anti-glycation potential with glycated LDL utilizing spectroscopic and in silico methods. Glycated LDL treated with rutin, showed around 80 % inhibition in advanced glycation end-product production. Carbonyl content and lipid peroxidation like assays were used to establish the development of oxidative stress. Rutin was seen to lower the generation of oxidative stress in a dose-dependent manner. Using thioflavin-T assay and electron microscopy, rutin was suggested to restore the structural disturbances in glycated LDL. Moreover, CD spectroscopy suggested reinstation of secondary structure of glycated LDL treated with rutin. Mechanistic insights between rutin and LDL were observed through spectroscopic measures. Molecular docking study confirmed the LDL-rutin binding with a binding energy of -10.0 kcal/mol. The rutin-LDL complex was revealed to be highly stable by molecular dynamics simulation, with RMSD, RMSF, Rg, SASA, and the secondary structure of LDL remaining essentially unchanged during the simulation period. Our study suggests that rutin possesses strong anti-glycating properties, which can be useful in therapeutics, as glycated LDL has an important role in atherosclerotic cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Humanos , Lipoproteínas LDL/metabolismo , Rutina/farmacologia , Reação de Maillard , Simulação de Acoplamento Molecular , Produtos Finais de Glicação Avançada
4.
Front Pharmacol ; 13: 901710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784687

RESUMO

Background: The current gold-standard therapies for chronic obstructive pulmonary disease (COPD) lack disease-modifying potential and exert adverse side effects. Moreover, COPD patients are at a higher risk of severe outcomes if they get infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, the cause of the current epidemic. This is the first study to document clinical research on an adaptogenic and steroidal activity-containing herb as a complementary medicine for COPD treatment. Objective: We aimed to evaluate the efficacy of Withania somnifera (L.) Dunal [Solanaceae] (WS) as an add-on therapy for COPD patients. Methods: A randomized, placebo-controlled, and double-blind clinical study was conducted. A total of 150 patients were randomly assigned to three groups: control, placebo, and WS group. In addition to conventional medicines, WS root capsules or starch capsules were given twice a day to the WS group and the placebo group, respectively. Their lung functioning, quality of life, exercise tolerance, systemic oxidative stress (OS), and systemic inflammation were assessed before and after 12 weeks of intervention. WS root phytochemicals were identified by LC-ESI-MS. The inhibitory activity of these phytochemicals against angiotensin-converting enzyme 2 (ACE-2); the SARS-CoV-2 receptor; myeloperoxidase (MPO); and interleukin-6 (IL-6) was evaluated by in silico docking to investigate the mechanism of action of WS. Results: The pulmonary functioning, quality of life, and exercise tolerance improved, and inflammation reduced notably the most in the WS group. Systemic oxidative stress subsided significantly only in the WS group. Although a minor placebo effect was observed in the SGRQ test, but it was not present in other tests. Withanolides found in the WS roots demonstrated substantial inhibitory activity against the proteins ACE-2, MPO, and IL-6, compared to that of a standard drug or known inhibitor. Moreover, FEV1% predicted had significant correlation with systemic antioxidative status (positive correlation) and malondialdehyde (MDA, negative correlation), suggesting that the antioxidative potential of WS has significant contribution to improving lung functioning. Conclusion: Our study clinically demonstrated that WS root when given along with conventional drugs ameliorated COPD significantly more in comparison to the conventional drugs alone, in GOLD 2 and 3 categories of COPD patients. In silico, it has potent inhibitory activity against SARS-CoV-2 receptor, ACE-2, MPO, and IL-6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA