Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 20(2): 1382-1393, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36583939

RESUMO

The study aimed to improve the treatment of impetigo with naturally occurring quercetin and its copper-quercetin (Cu-Q) complex by preparing sustained-release (SR) nanoparticles of polycaprolactone (PCL). The solvent evaporation method was used for the copper-quercetin (Cu-Q) complex formation, and their PCL nanoparticles (PCL-NPs, Q-PCL-NPs, and Cu-Q-PCL-NPs) were prepared by the high-pressure homogenization method. Synthesis of nanoparticles was confirmed by their physicochemical and antibacterial properties of quercetin against Gram-positive as well as Gram-negative bacteria. The percentage loading efficiency of quercetin and release in 100 mM of phosphate buffer pH 7.4 and 5.5 at 37 °C was found to be more than 90% after 24 h with the zero-order release pattern. Minimum inhibitory concentration of nanoparticles was found to increase threefold in the case of Cu-Q-PCL-NPs may be due to the synergistic antibacterial behavior. Scanning electron microscopy showed spherical nanoparticles, and surface roughness was confirmed by atomic force microscopy analysis. Fortunately, no sign of irritation on rat skin even at 3%, was seen. In vitro antioxidant assay by 2,2-diphenyl-1-picrylhydrazyl reduction was found to be ≤80 ± 0.02% which confirmed their scavenging activity. Interestingly, for the ex vivo study, the tape-stripping model was applied against Staphylococcus aureus containing rats and showed the formation of the epidermal layer within 4-5 days. Confirmation of antibacterial activity of pure quercetin, from Cu-Q complex, and their SR release from Q-PCL-NPs and Cu-Q-PCL-NPs was considered an effective tool for the treatment of skin diseases and can be used as an alternative of already resistant ciprofloxacin in impetigo.


Assuntos
Impetigo , Nanopartículas , Ratos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Quercetina/química , Cobre/química , Preparações de Ação Retardada , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química
2.
Food Sci Nutr ; 12(4): 2846-2854, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628217

RESUMO

Culinary herbs and spices are primarily known as flavor enhancers, research suggests that black pepper (Piper nigrum) and turmeric (Curcuma longa) have now been proven to prevent many non-communicable chronic diseases such as diabetes. Bioactive components of black pepper and turmeric ameliorate glucose metabolism and appetite regulation. The present research was designed to investigate the impact of turmeric and black pepper on blood glycemia, gastrointestinal well-being, appetite, and palatability. In a randomized crossover study, four iso-caloric experimental meals each having 50 g of available carbohydrates were subjected to healthy human participants (N = 20). Turmeric and black pepper were incorporated in the breakfast meal, 1 g black pepper (BP), 1 g turmeric (TR), and combination of the (BP + TR) was added in the breakfast. Standard questionnaires were used to evaluate palatability, subjective appetite, and gastrointestinal well-being. Blood glycemia, subjective gastrointestinal well-being, and appetite were measured at 0, 30, 60, 120, and 180 min. Experimental meals BP and BP + TR resulted in lower blood glycemia (p < .05) significantly compared to control meal. A decrease in perceived eating ability and hunger, and an increase in satiety after BP + TR and BP meal was observed. No significant changes were observed after consuming test meals on gastrointestinal well-being. Compared to control and BP + TR meals, BP and TR meals had considerably lower palatability. Results showed that compared to the control intake of starchy meals supplemented with black pepper and turmeric reduced postprandial glycemia, hunger, and perceived eating ability without affecting gastrointestinal well-being.

3.
Insects ; 14(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37504625

RESUMO

An insecticide containing the neonicotinoid thiamethoxam + the diamide chlorantraniliprole was evaluated against adults of Rhyzopertha dominica, Tribolium castaneum, Trogoderma granarium, and Sitophilus oryzae under laboratory bioassays both on freshly treated grain as well as on treated grain stored over 90 days for its persistence in efficacy. In laboratory bioassays, the insecticide was applied on wheat, maize, or rice at four doses, while in persistence bioassays on wheat at the same doses. Mortality and progeny were assessed in both laboratory and persistence bioassays. After 14 days of exposure, S. oryzae exhibited 100% mortality on all three commodities at the highest dose, while R. dominica showed complete mortality on wheat or rice and T. castaneum on wheat. For a period of 90 days, S. oryzae exhibited 42.69% mortality, followed by R. dominica (35.26%), T. castaneum (27.08%), and T. granarium (18.63%) at the highest dose. Progeny was successfully suppressed in all cases of complete mortality in laboratory bioassays and for S. oryzae for 90 days in persistence bioassays. Laboratory trials were also performed on plywood, concrete, ceramic tile, and steel at one dose. The highest mortality was observed on steel, followed by concrete, ceramic tile, and plywood for all insect species tested. This study demonstrates that thiamethoxam + chlorantraniliprole is effective against the tested species depending on exposure, storage period, surface, commodity, and dose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA