Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 14(25): 29412-29421, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35700391

RESUMO

A synergistic approach that incorporates first-principles atomistic modeling with numerical device simulations is used to systematically evaluate the role of heterointerfaces within metal-chalcogenide-based photovoltaic technologies. Two interfaces involving either a tellurium back contact or aluminum back electrode combined with a cadmium telluride absorber layer within cadmium-telluride-based thin-film solar cells are investigated on an atomic scale to determine the mechanisms contributing to variations in device performance. Electronic structures and predicted charge transport behavior with respect to cadmium and tellurium termination of the absorber layer are studied along the polar oriented CdTe{111} facets. The computational methodology reveals a noticeable contrast between the Schottky barrier forming Al/CdTe interface versus the Type I Te/CdTe heterojunction. Greater band bending features are exhibited by the cadmium termination as opposed to the tellurium termination for each interface case. Subsequent device modeling suggests that 3.6% higher photovoltaic conversion efficiency is achievable for the cadmium termination relative to the tellurium termination of the Te/CdTe interface. Based strictly on an idealistic representation, both interface models show the importance of atomic-scale interfacial properties for cadmium telluride solar cell device performance with their bulk properties being validated in comparison to published experimental data. The synergistic approach offers a suitable method to analyze solar cell interfaces through a predictive computational framework for the engineering and optimization of metal-chalcogenide-based thin-film photovoltaic technologies.

3.
ACS Omega ; 7(41): 36873-36879, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278043

RESUMO

Full-spectrum cathodoluminescence (CL) mapping provides a point-by-point spatial measurement of the apparent band gap of a semiconductor thin film. In most studies, analysis of the electrical film properties from CL is presented as color mapping images. We have developed a spectra data analysis algorithm to functionalize, analyze, and generate statistical measurements of the luminescence data to provide additional insights. This algorithm was coded in the R language program, and a set of CdMgSeTe films were studied as an application case study. CL maps were measured for samples with different luminescent responses. A quantitative measure of the heterogeneity of the films was generated by statistical analysis of luminescent intensity and wavelength, spectra type curves, frequency distributions of peak wavelength, and relative intensity maps. The final CL analysis facilitates the investigation of the CdMgSeTe films and has potential applications for many semiconductor films.

4.
ACS Appl Mater Interfaces ; 14(35): 39976-39984, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36000715

RESUMO

Solar cells are essentially minority carrier devices, and it is therefore of central importance to understand the pertinent carrier transport processes. Here, we advanced a transport imaging technique to directly visualize the charge motion and collection in the direction of relevant carrier transport and to understand the cell operation and degradation in state-of-the-art cadmium telluride solar cells. We revealed complex carrier transport profiles in the inhomogeneous polycrystalline thin-film solar cell, with the influence of electric junction, interface, recombination, and material composition. The pristine cell showed a unique dual peak in the carrier transport light intensity decay profile, and the dual peak feature disappeared on a degraded cell after light and heat stressing in the lab. The experiments, together with device modeling, suggested that selenium diffusion plays an important role in carrier transport. The work opens a new forum by which to understand the carrier transport and bridge the gap between atomic/nanometer-scale chemical/structural and submicrometer optoelectronic knowledge.

5.
ACS Appl Mater Interfaces ; 13(29): 35086-35096, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34264063

RESUMO

Chlorine passivation treatment of cadmium telluride (CdTe) solar cells improves device performance by assisting electron-hole carrier separation at CdTe grain boundaries. Further improvement in device efficiency is observed after alloying the CdTe absorber layer with selenium. High-resolution secondary ion mass spectroscopy (NanoSIMS) imaging has been used to determine the distribution of selenium and chlorine at the CdTe grain boundaries in a selenium-graded CdTe device. Atomistic modeling based on density functional theory (DFT-1/2) further reveals that the presence of selenium and chlorine at an exemplar (110)/(100) CdTe grain boundary passivates critical acceptor defects and leads to n-type inversion at the grain boundary. The defect state analysis provides an explanation for the band-bending effects observed in the energy band alignment results, thereby elucidating mechanisms for high efficiencies observed in Se-alloyed and Cl-passivated CdTe solar cells.

6.
ACS Appl Mater Interfaces ; 10(11): 9817-9822, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29528212

RESUMO

Postdeposition CdCl2 treatment of polycrystalline CdTe is known to increase the photovoltaic device efficiency. However, the precise chemical, structural, and electronic changes that underpin this improvement are still debated. In this study, spectroscopic photoemission electron microscopy was used to spatially map the vacuum level and ionization energy of CdTe films, enabling the identification of electronic structure variations between grains and grain boundaries (GBs). In vacuo preparation and inert transfer of oxide-free CdTe surfaces isolated the separate effects of CdCl2 treatment and ambient oxygen exposure. Qualitatively, grain boundaries displayed lower work function and downward band bending relative to grain interiors, but only after air exposure of CdCl2-treated CdTe. Analysis of numerous space charge regions at grain boundaries showed an average depletion width of 290 nm and an average band bending magnitude of 70 meV, corresponding to a GB trap density of 1011 cm-2 and a net carrier density of 1015 cm-3. These results suggest that both CdCl2 treatment and oxygen exposure may be independently tuned to enhance the CdTe photovoltaic performance by engineering the interface and bulk electronic structure.

7.
ACS Appl Mater Interfaces ; 7(30): 16382-6, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26200260

RESUMO

On the basis of a combination of X-ray photoelectron spectroscopy and synchrotron-based X-ray emission spectroscopy, we present a detailed characterization of the chemical structure of CdS:O thin films that can be employed as a substitute for CdS layers in thin-film solar cells. It is possible to analyze the local chemical environment of the probed elements, in particular sulfur, hence allowing insights into the species-specific composition of the films and their surfaces. A detailed quantification of the observed sulfur environments (i.e., sulfide, sulfate, and an intermediate oxide) as a function of oxygen content is presented, allowing a deliberate optimization of CdS:O thin films for their use as alternative buffer layers in thin-film photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA