Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Immunol ; 267(1): 9-16, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21092943

RESUMO

Toll-like receptor 3 (TLR3) binds and signals in response to dsRNA and poly(I:C), a synthetic double stranded RNA analog. Activation of TLR3 triggers innate responses that may play a protective or detrimental role in viral infections or in immune-mediated inflammatory diseases through amplification of inflammation. Two monoclonal antibodies, CNTO4685 (rat anti-mouse TLR3) and CNTO5429 (CDRs from CNTO4685 grafted onto a mouse IgG1 scaffold) were generated and characterized. These mAbs bind the extracellular domain of mouse TLR3, inhibit poly(I:C)-induced activation of HEK293T cells transfected with mTLR3, and reduce poly(I:C)-induced production of CCL2 and CXCL10 by primary mouse embryonic fibroblasts. CNTO5429 decreased serum IL-6 and TNFα levels post-intraperitoneal poly(I:C) administration, demonstrating in vivo activity. In summary, specific anti-mTLR3 mAbs have been generated to assess TLR3 antagonism in mouse models of inflammation.


Assuntos
Anticorpos Monoclonais/imunologia , Poli I-C/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Linhagem Celular , Células Cultivadas , Humanos , Inflamação/imunologia , Espaço Intracelular/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor 3 Toll-Like/genética
2.
Respir Res ; 10: 43, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19486528

RESUMO

BACKGROUND: The immune mechanisms associated with infection-induced disease exacerbations in asthma and COPD are not fully understood. Toll-like receptor (TLR) 3 has an important role in recognition of double-stranded viral RNA, which leads to the production of various inflammatory mediators. Thus, an understanding of TLR3 activation should provide insight into the mechanisms underlying virus-induced exacerbations of pulmonary diseases. METHODS: TLR3 knock-out (KO) mice and C57B6 (WT) mice were intranasally administered repeated doses of the synthetic double stranded RNA analog poly(I:C). RESULTS: There was a significant increase in total cells, especially neutrophils, in BALF samples from poly(I:C)-treated mice. In addition, IL-6, CXCL10, JE, KC, mGCSF, CCL3, CCL5, and TNFalpha were up regulated. Histological analyses of the lungs revealed a cellular infiltrate in the interstitium and epithelial cell hypertrophy in small bronchioles. Associated with the pro-inflammatory effects of poly(I:C), the mice exhibited significant impairment of lung function both at baseline and in response to methacholine challenge as measured by whole body plethysmography and an invasive measure of airway resistance. Importantly, TLR3 KO mice were protected from poly(I:C)-induced changes in lung function at baseline, which correlated with milder inflammation in the lung, and significantly reduced epithelial cell hypertrophy. CONCLUSION: These findings demonstrate that TLR3 activation by poly(I:C) modulates the local inflammatory response in the lung and suggest a critical role of TLR3 activation in driving lung function impairment. Thus, TLR3 activation may be one mechanism through which viral infections contribute toward exacerbation of respiratory disease.


Assuntos
Inflamação/induzido quimicamente , Poli I-C/farmacologia , Receptor 3 Toll-Like/fisiologia , Animais , Linhagem Celular , Citocinas/metabolismo , Feminino , Humanos , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pletismografia , Testes de Função Respiratória , Receptor 3 Toll-Like/deficiência , Receptor 3 Toll-Like/genética
3.
Cell Immunol ; 248(2): 103-14, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18048020

RESUMO

Toll-like receptors are a family of pattern-recognition receptors that contribute to the innate immune response. Toll-like receptor 3 (TLR3) signals in response to foreign, endogenous and synthetic ligands including viral dsRNA, bacterial RNA, mitochondrial RNA, endogenous necrotic cell mRNA and the synthetic dsRNA analog, poly(I:C). We have generated a monoclonal antibody (mAb CNTO2424) that recognizes the extracellular domain (ECD) of human TLR3 in a conformation-dependent manner. CNTO2424 down-regulates poly(I:C)-induced production of IL-6, IL-8, MCP-1, RANTES, and IP-10 in human lung epithelial cells. In addition, mAb CNTO2424 was able to interfere with the known TLR3-dependent signaling pathways, namely NF-kappaB, IRF-3/ISRE, and p38 MAPK. The generation of this neutralizing anti-TLR3 mAb provides a unique tool to better understand TLR3 signaling and potential cross-talk between TLR3 and other molecules.


Assuntos
Anticorpos Monoclonais , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor 3 Toll-Like/imunologia , Animais , Anticorpos Bloqueadores/metabolismo , Anticorpos Monoclonais/metabolismo , Sítios de Ligação de Anticorpos , Linhagem Celular , Linhagem Celular Transformada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Projetos Piloto , Receptor 3 Toll-Like/metabolismo
4.
Physiol Genomics ; 26(2): 125-33, 2006 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-16554548

RESUMO

To gain global pathway perspective of ex vivo viral infection models using human peripheral blood mononuclear cells (PBMCs), we conducted expression analysis on PBMCs of healthy donors. RNA samples were collected at 3 and 24 h after PBMCs were challenged with the Toll-like receptor-3 (TLR3) agonist polyinosinic acid-polycytidylic acid [poly(I:C)] and analyzed by internally developed cDNA microarrays and TaqMan PCR. Our results demonstrate that poly(I:C) challenge can elicit certain gene expression changes, similar to acute viral infection. Hierarchical clustering revealed distinct immediate early, early-to-late, and late gene regulation patterns. The early responses were innate immune responses that involve TLR3, the NF-kappaB-dependent pathway, and the IFN-stimulated pathway, whereas the late responses were mostly cell-mediated immune response that involve activation of cell adhesion, cell mobility, and phagocytosis. Overall, our results expanded the utilities of this ex vivo model, which could be used to screen molecules that can modulate viral stress-induced inflammation, in particular those mediated via TLRs.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Indutores de Interferon/farmacologia , Leucócitos Mononucleares/metabolismo , Poli I-C/farmacologia , Análise por Conglomerados , Humanos , Inflamação , Interferons/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fagocitose , Receptor 3 Toll-Like/metabolismo
5.
Metabolism ; 61(11): 1633-45, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22607770

RESUMO

OBJECTIVE: Emerging evidence suggests a link between innate immunity and development of type 2 diabetes mellitus (T2D); however, the molecular mechanisms linking them are not fully understood. Toll-like Receptor 3 (TLR3) is a pathogen pattern recognition receptor that recognizes the double-stranded RNA of microbial or mammalian origin and contributes to immune responses in the context of infections and chronic inflammation. The objective of this study was to determine whether TLR3 activity impacts insulin sensitivity and lipid metabolism. MATERIALS AND METHODS: Wild type (WT) and TLR3 knock-out (TLR3(-/-)) mice were fed a high fat diet (HFD) and submitted to glucose tolerance tests (GTTs) over a period of 33 weeks. In another study, the same group of mice was treated with a neutralizing monoclonal antibody (mAb) against mouse TLR3. RESULTS: TLR3(-/-) mice fed an HFD developed obesity, although they exhibited improved glucose tolerance and lipid profiles compared with WT obese mice. In addition, the increase in liver weight and lipid content normally observed in WT mice on an HFD was significantly ameliorated in TLR3(-/-) mice. These changes were accompanied by up-regulation of genes involved in cholesterol efflux such as PPARδ, LXRα, and LXRα-targeting genes and down-regulation of pro-inflammatory cytokine and chemokine genes in obese TLR3(-/-) mice. Furthermore, global gene expression profiling in liver demonstrated TLR3-specific changes in both lipid biosynthesis and innate immune response pathways. CONCLUSIONS: TLR3 affects glucose and lipid metabolism as well as inflammatory mediators, and findings in this study reveal a new role for TLR3 in metabolic homeostasis. This suggests antagonizing TLR3 may be a beneficial therapeutic approach for the treatment of metabolic diseases.


Assuntos
Fígado Gorduroso/fisiopatologia , Teste de Tolerância a Glucose , Obesidade/fisiopatologia , Receptor 3 Toll-Like/fisiologia , Animais , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Receptor 3 Toll-Like/genética
6.
J Mol Biol ; 421(1): 112-24, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22579623

RESUMO

Toll-like receptor 3 (TLR3) recognizes dsRNA and initiates an innate immune response through the formation of a signaling unit (SU) composed of one double-stranded RNA (dsRNA) and two TLR3 molecules. We report the crystal structure of human TLR3 ectodomain (TLR3ecd) in a quaternary complex with three neutralizing Fab fragments. Fab15 binds an epitope that overlaps the C-terminal dsRNA binding site and, in biochemical assays, blocks the interaction of TLR3ecd with dsRNA, thus directly antagonizing TLR3 signaling through inhibition of SU formation. In contrast, Fab12 and Fab1068 bind TLR3ecd at sites distinct from the N- and C-terminal regions that interact with dsRNA and do not inhibit minimal SU formation with short dsRNA. Molecular modeling based on the co-structure rationalizes these observations by showing that both Fab12 and Fab1068 prevent lateral clustering of SUs along the length of the dsRNA ligand. This model is further supported by cell-based assay results using dsRNA ligands of lengths that support single and multiple SUs. Thus, their antagonism of TLR3 signaling indicates that lateral clustering of SUs is required for TLR3 signal transduction.


Assuntos
RNA de Cadeia Dupla/metabolismo , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/metabolismo , Afinidade de Anticorpos , Sítios de Ligação , Linhagem Celular , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Transdução de Sinais , Receptor 3 Toll-Like/genética
7.
Cancer Immunol Immunother ; 54(11): 1082-94, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16047142

RESUMO

Prostate specific antigen (PSA) is a serum marker that is widely used in the detection and monitoring of prostate cancer. Though PSA is a self-antigen, T cell responses to PSA epitopes have been detected in healthy men and prostate cancer patients, suggesting it may be used as a target for active immunotherapy of prostate cancer. A PSA DNA vaccine (pPSA) was evaluated in mice and monkeys for its ability to induce antigen-specific immune responses. Mice immunized intradermally with pPSA demonstrated strong PSA-specific humoral and cellular immunity. The anti-PSA immune responses were skewed toward Th1, as shown by high IFNgamma and IL-2 production. The immune response was sufficient to protect mice from challenge with PSA-expressing tumor cells. Tumor protection was durable in the absence of additional vaccination, as demonstrated by protection of vaccinated mice from tumor rechallenge. Furthermore, pPSA vaccination induced PSA-specific antibody titers in male cynomolgus monkeys, which express a closely related PSA gene. These results demonstrate that vaccination with pPSA may be able to break tolerance and can induce an immune response that mediates tumor protection.


Assuntos
Antígeno Prostático Específico/imunologia , Neoplasias da Próstata/prevenção & controle , Células Th1/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos/sangue , Feminino , Humanos , Imunização , Interferon gama/biossíntese , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Citotóxicos/imunologia
8.
J Immunol ; 169(9): 5202-8, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12391238

RESUMO

The immune system has evolved various effector cells and functions to combat diverse infectious agents equipped with different virulence strategies. CD8 T cells play a critical role in protective immunity to Listeria monocytogenes (Lm), a bacterium that grows within the host cell cytosol and spreads directly into neighboring cells. The importance of CD8 T cells during Lm infection is currently attributed to the cytosolic niche of this organism, which allows it to evade many aspects of immune surveillance. CTL lysis of infected cells is believed to be an essential protective mechanism, presumably functioning to release intracellular bacteria, although its precise role remains to be fully defined. In this study, we examined the contribution of perforin-mediated CTL cytolysis to protective immunity against recombinant Lm capable of or defective in cell-cell spread. We found that CTL cytolysis is critical for protective immunity to Lm capable of cell-cell spread while protective immunity against spread-defective Lm is largely independent of CTL cytolysis. These results demonstrate that an important function of CTL cytolysis is to counter the microbial virulence strategy of direct cell-cell spread. We propose a model that advances the current view of the role of CTL cytolysis in immunity to intracellular pathogens.


Assuntos
Citotoxicidade Imunológica , Listeria monocytogenes/imunologia , Listeria monocytogenes/patogenicidade , Glicoproteínas de Membrana/fisiologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/microbiologia , Animais , Antígenos Virais/imunologia , Citotoxicidade Imunológica/genética , Epitopos de Linfócito T/imunologia , Glicoproteínas/imunologia , Imunidade Celular/genética , Memória Imunológica/genética , Listeria monocytogenes/genética , Listeriose/genética , Listeriose/imunologia , Listeriose/microbiologia , Vírus da Coriomeningite Linfocítica/imunologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fragmentos de Peptídeos/imunologia , Perforina , Proteínas Citotóxicas Formadoras de Poros , Recombinação Genética , Linfócitos T Citotóxicos/virologia , Proteínas Virais/imunologia , Virulência
9.
J Immunol ; 171(11): 6032-8, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14634115

RESUMO

Memory CD8 T cells play a critical role in protective immunity against intracellular pathogens. In addition to their ability to specifically recognize and lyse infected targets, activated CD8 T cells secrete cytokines that induce phagocytic cells to engulf and kill bacterial pathogens. In this study, we asked whether activation of Ag-specific CD8 T cells results in nonspecific killing of bystander bacteria during a mixed infection. Mice with epitope-specific memory CD8 T cells were coinfected with two isogenic strains of recombinant Listeria monocytogenes that differ in the cognate epitope. Recall responses by epitope-specific CD8 T cells rapidly inhibited the growth of epitope-bearing bacteria, impeding the course of infection within 6 h after challenge. This rapid inhibition was highly specific and did not affect the growth of coinfecting bacteria without the epitope. CTL recall did not enhance activation of innate immune cells, as evidenced by the absence of inducible NO synthase production in infectious foci. Our observations demonstrate the remarkable specificity of the bactericidal mechanisms of CTL and reveal the possibility for escape mutants to prevail in the hostile environment of a specific immune response. This implication has a bearing on subunit vaccine design strategies and understanding failure of immunization against bacterial infection.


Assuntos
Efeito Espectador/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Citotoxicidade Imunológica/imunologia , Epitopos de Linfócito T/imunologia , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/imunologia , Ativação Linfocitária/imunologia , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/citologia , Feminino , Memória Imunológica , Listeria monocytogenes/genética , Listeriose/imunologia , Listeriose/microbiologia , Listeriose/patologia , Contagem de Linfócitos , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/microbiologia , Coriomeningite Linfocítica/patologia , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/imunologia , Ativação de Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Nucleoproteínas/administração & dosagem , Nucleoproteínas/genética , Nucleoproteínas/imunologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
10.
Infect Immun ; 70(3): 1367-71, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11854222

RESUMO

Haemophilus ducreyi produces a periplasmic copper-zinc superoxide dismutase (Cu-Zn SOD), which is thought to protect the organism from exogenous reactive oxygen species generated by neutrophils during an inflammatory response. We had previously identified the gene, sodC, responsible for the production and secretion of Cu-Zn SOD and constructed an isogenic H. ducreyi strain with a mutation in the sodC gene (35000HP-sodC-cat). Compared to the parent, the mutant does not survive in the presence of exogenous superoxide (L. R. San Mateo, M. Hobbs, and T. H. Kawula, Mol. Microbiol. 27:391-404, 1998) and is impaired in the swine model of H. ducreyi infection (L. R. San Mateo, K. L. Toffer, P. E. Orndorff, and T. H. Kawula, Infect. Immun. 67:5345-5351, 1999). To test whether Cu-Zn SOD is important for bacterial survival in vivo, six human volunteers were experimentally infected with 35000HP and 35000HP-sodC-cat and observed for papule and pustule formation. Papules developed at similar rates at sites inoculated with the mutant or parent. The pustule formation rates were 75% (95% confidence intervals [CI], 43 to 95%) at 12 parent-inoculated sites and 67% (95% CI, 41 to 88%) at 18 mutant-inoculated sites (P = 0.47). There was no significant difference in levels of H. ducreyi recovery from mutant- and parent-inoculated biopsy sites. These results suggest that expression of Cu-Zn SOD does not play a major role in the survival of this pathogen in the initial stages of experimental infection of humans.


Assuntos
Proteínas de Escherichia coli , Haemophilus ducreyi/patogenicidade , Superóxido Dismutase/genética , Adulto , Braço/microbiologia , Feminino , Haemophilus ducreyi/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Pele/microbiologia
11.
Infect Immun ; 71(12): 6971-7, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14638786

RESUMO

Haemophilus ducreyi is the etiologic agent of the sexually transmitted genital ulcer disease chancroid. Neither naturally occurring chancroid nor experimental infection with H. ducreyi results in protective immunity. Likewise, a single inoculation of H. ducreyi does not protect pigs against subsequent infection. Accordingly, we used the swine model of chancroid infection to examine the impact of multiple inoculations on a host's immune response. After three successive inoculations with H. ducreyi, pigs developed a modestly protective immune response evidenced by the decreased recovery of viable bacteria from lesions. All lesions biopsied 2 days after the first and second inoculations contained viable H. ducreyi cells, yet only 55% of the lesions biopsied 2 days after the third inoculation did. Nearly 90% of the lesions biopsied 7 days after the first inoculation contained viable H. ducreyi cells, but this percentage dropped to only 16% after the third inoculation. Between the first and third inoculations, the average recovery of CFU from lesions decreased approximately 100-fold. The reduced recovery of bacteria corresponded directly with a fivefold increase in H. ducreyi-specific antibody titers and the emergence of bactericidal activity. These immune sera were protective when administered to naïve pigs prior to challenge with H. ducreyi. These data suggest that pigs mount an effective humoral immune response to H. ducreyi after multiple exposures to the organism.


Assuntos
Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Cancroide/imunologia , Cancroide/prevenção & controle , Haemophilus ducreyi/imunologia , Animais , Especificidade de Anticorpos , Cancroide/microbiologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Feminino , Vacinas Anti-Haemophilus/administração & dosagem , Vacinas Anti-Haemophilus/imunologia , Haemophilus ducreyi/isolamento & purificação , Haemophilus ducreyi/patogenicidade , Humanos , Soros Imunes/imunologia , Imunização Passiva , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA