Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(3): e2214700120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626562

RESUMO

KCNH2 encodes hERG1, the voltage-gated potassium channel that conducts the rapid delayed rectifier potassium current (IKr) in human cardiac tissue. hERG1 is one of the first channels expressed during early cardiac development, and its dysfunction is associated with intrauterine fetal death, sudden infant death syndrome, cardiac arrhythmia, and sudden cardiac death. Here, we identified a hERG1 polypeptide (hERG1NP) that is targeted to the nuclei of immature cardiac cells, including human stem cell-derived cardiomyocytes (hiPSC-CMs) and neonatal rat cardiomyocytes. The nuclear hERG1NP immunofluorescent signal is diminished in matured hiPSC-CMs and absent from adult rat cardiomyocytes. Antibodies targeting distinct hERG1 channel epitopes demonstrated that the hERG1NP signal maps to the hERG1 distal C-terminal domain. KCNH2 deletion using CRISPR simultaneously abolished IKr and the hERG1NP signal in hiPSC-CMs. We then identified a putative nuclear localization sequence (NLS) within the distal hERG1 C-terminus, 883-RQRKRKLSFR-892. Interestingly, the distal C-terminal domain was targeted almost exclusively to the nuclei when overexpressed HEK293 cells. Conversely, deleting the NLS from the distal peptide abolished nuclear targeting. Similarly, blocking α or ß1 karyopherin activity diminished nuclear targeting. Finally, overexpressing the putative hERG1NP peptide in the nuclei of HEK cells significantly reduced hERG1a current density, compared to cells expressing the NLS-deficient hERG1NP or GFP. These data identify a developmentally regulated polypeptide encoded by KCNH2, hERG1NP, whose presence in the nucleus indirectly modulates hERG1 current magnitude and kinetics.


Assuntos
Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Miócitos Cardíacos , Animais , Humanos , Ratos , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Células HEK293 , Miócitos Cardíacos/metabolismo , Peptídeos/metabolismo
2.
Anesthesiology ; 126(4): 643-652, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28166110

RESUMO

BACKGROUND: While electroconvulsive therapy is widely regarded as a lifesaving and safe procedure, evidence regarding its effects on myocardial cell injury is sparse. The objective of this investigation was to determine the incidence and magnitude of new cardiac troponin elevation after electroconvulsive therapy using a novel high-sensitivity cardiac troponin I assay. METHODS: This was a prospective cohort study in adult patients undergoing electroconvulsive therapy in a single academic center (up to three electroconvulsive therapy treatments per patient). The primary outcome was new high-sensitivity cardiac troponin I elevation after electroconvulsive therapy, defined as an increase of high-sensitivity cardiac troponin I greater than 100% after electroconvulsive therapy compared to baseline with at least one value above the limit of quantification (10 ng/l). Twelve-lead electrocardiogram and high-sensitivity cardiac troponin I values were obtained before and 15 to 30 min after electroconvulsive therapy; in a subset of patients, an additional 2-h high-sensitivity cardiac troponin I value was obtained. RESULTS: The final study population was 100 patients and a total of 245 electroconvulsive therapy treatment sessions. Eight patients (8 of 100; 8%) experienced new high-sensitivity cardiac troponin I elevation after electroconvulsive therapy with a cumulative incidence of 3.7% (9 of 245 treatments; one patient had two high-sensitivity cardiac troponin I elevations), two of whom had a non-ST-elevation myocardial infarction (incidence 2 of 245; 0.8%). Median high-sensitivity cardiac troponin I concentrations did not increase significantly after electroconvulsive therapy. Tachycardia and/or elevated systolic blood pressure developed after approximately two thirds of electroconvulsive therapy treatments. CONCLUSIONS: Electroconvulsive therapy appears safe from a cardiac standpoint in a large majority of patients. A small subset of patients with preexisting cardiovascular risk factors, however, may develop new cardiac troponin elevation after electroconvulsive therapy, the clinical relevance of which is unclear in the absence of signs of myocardial ischemia.


Assuntos
Eletroconvulsoterapia , Troponina I/sangue , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco
3.
Front Mol Neurosci ; 15: 890368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600076

RESUMO

The ERG1 potassium channel, encoded by KCNH2, has long been associated with cardiac electrical excitability. Yet, a growing body of work suggests that ERG1 mediates physiology throughout the human body, including the brain. ERG1 is a regulator of neuronal excitability, ERG1 variants are associated with neuronal diseases (e.g., epilepsy and schizophrenia), and ERG1 serves as a potential therapeutic target for neuronal pathophysiology. This review summarizes the current state-of-the-field regarding the ERG1 channel structure and function, ERG1's relationship to the mammalian brain and highlights key questions that have yet to be answered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA