Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 72(2): 345-359, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35428659

RESUMO

OBJECTIVE: The lysyl oxidase-like protein 2 (LOXL2) contributes to tumour progression and metastasis in different tumour entities, but its role in pancreatic ductal adenocarcinoma (PDAC) has not been evaluated in immunocompetent in vivo PDAC models. DESIGN: Towards this end, we used PDAC patient data sets, patient-derived xenograft in vivo and in vitro models, and four conditional genetically-engineered mouse models (GEMMS) to dissect the role of LOXL2 in PDAC. For GEMM-based studies, K-Ras +/LSL-G12D;Trp53 LSL-R172H;Pdx1-Cre mice (KPC) and the K-Ras +/LSL-G12D;Pdx1-Cre mice (KC) were crossed with Loxl2 allele floxed mice (Loxl2Exon2 fl/fl) or conditional Loxl2 overexpressing mice (R26Loxl2 KI/KI) to generate KPCL2KO or KCL2KO and KPCL2KI or KCL2KI mice, which were used to study overall survival; tumour incidence, burden and differentiation; metastases; epithelial to mesenchymal transition (EMT); stemness and extracellular collagen matrix (ECM) organisation. RESULTS: Using these PDAC mouse models, we show that while Loxl2 ablation had little effect on primary tumour development and growth, its loss significantly decreased metastasis and increased overall survival. We attribute this effect to non-cell autonomous factors, primarily ECM remodelling. Loxl2 overexpression, on the other hand, promoted primary and metastatic tumour growth and decreased overall survival, which could be linked to increased EMT and stemness. We also identified tumour-associated macrophage-secreted oncostatin M (OSM) as an inducer of LOXL2 expression, and show that targeting macrophages in vivo affects Osm and Loxl2 expression and collagen fibre alignment. CONCLUSION: Taken together, our findings establish novel pathophysiological roles and functions for LOXL2 in PDAC, which could be potentially exploited to treat metastatic disease.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Transição Epitelial-Mesenquimal/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Macrófagos/metabolismo , Aminoácido Oxirredutases/genética , Neoplasias Pancreáticas
2.
J Cross Cult Gerontol ; 36(4): 431-444, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34748118

RESUMO

Although the Brief Resilient Coping Scale (BRCS) has been validated in some European and American countries, there are no studies that evaluate its factorial invariance among different nations. In this sense, the objective of the study is to evaluate the factorial invariance of the BRCS in samples of older adults in Peru and Spain, using multigroup Confirmatory Factor Analysis. 236 older adults from Peru participated (Mean age = 72.8, SD = 6.90) and 133 older adults from Spain (Mean age = 71, SD = 7). In the Peruvian sample 78.4% were women and 21.6% men; while in the Spanish sample the majority were women (69.9%). The BRCS was scalar invariant but not strictly invariant between Spain and Peru. Our results found invariance of the structure, factor loadings and intercepts in both countries. These results support the use of BRCS in studies that compare the resilience between samples of older adults in both countries, and encourage applied research for the development of resilience in older adults in Spain and Peru.


Assuntos
Adaptação Psicológica , Idoso , Análise Fatorial , Feminino , Humanos , Masculino , Peru , Psicometria , Reprodutibilidade dos Testes , Espanha
3.
Br J Cancer ; 114(12): 1305-12, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27219018

RESUMO

Cancer cells adapt cellular metabolism to cope with their high proliferation rate. Instead of primarily using oxidative phosphorylation (OXPHOS), cancer cells use less efficient glycolysis for the production of ATP and building blocks (Warburg effect). However, tumours are not uniform, but rather functionally heterogeneous and harbour a subset of cancer cells with stemness features. Such cancer cells have the ability to repopulate the entire tumour and thus have been termed cancer stem cells (CSCs) or tumour-initiating cells (TICs). As opposed to differentiated bulk tumour cells relying on glycolysis, CSCs show a distinct metabolic phenotype that, depending on the cancer type, can be highly glycolytic or OXPHOS dependent. In either case, mitochondrial function is critical and takes centre stage in CSC functionality. Remaining controversies in this young and emerging research field may be related to CSC isolation techniques and/or the use of less suitable model systems. Still, the apparent dependence of CSCs on mitochondrial function, regardless of their primary metabolic phenotype, represents a previously unrecognised Achilles heel amendable for therapeutic intervention. Elimination of highly chemoresistant CSCs as the root of many cancers via inhibition of mitochondrial function bears the potential to prevent relapse from disease and thus improve patients' long-term outcome.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Glicólise , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Fosforilação Oxidativa
4.
Pancreatology ; 16(4): 489-96, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27161173

RESUMO

Over the past decade, the cancer stem cell (CSC) concept in solid tumors has gained enormous momentum as an attractive model to explain tumor heterogeneity. The model proposes that tumors contain a subpopulation of rare cancer cells with stem-like properties that maintain the hierarchy of the tumor and drive tumor initiation, progression, metastasis, and chemoresistance. The identification and subsequent isolation of CSCs in pancreatic ductal adenocarcinoma (PDAC) in 2007 provided enormous insight into this extremely metastatic and chemoresistant tumor and renewed hope for developing more specific therapies against this disease. Unfortunately, we have made only marginal advances in applying the knowledge learned to the development of new and more effective treatments for pancreatic cancer. The latter has been partly due to the lack of adequate in vitro and in vivo systems compounded by the use of markers that do not reproducibly nor exclusively select for an enriched CSC population. Thus, attempts to define a pancreatic CSC-specific genetic, epigenetic or proteomic signature has been challenging. Fortunately recent advances in the CSC field have overcome many of these challenges and have opened up new opportunities for developing therapies that target the CSC population. In this review, we discuss these current advances, specifically new methods for the identification and isolation of pancreatic CSCs, new insights into the metabolic profile of CSCs at the level of mitochondrial respiration, and the utility of genetically engineered mouse models as surrogate systems to both study CSC biology and evaluate CSC-specific targeted therapies in vivo.


Assuntos
Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
5.
Gut ; 64(12): 1921-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25841238

RESUMO

OBJECTIVES: The tumour stroma/microenvironment not only provides structural support for tumour development, but more importantly it provides cues to cancer stem cells (CSCs) that regulate their self-renewal and metastatic potential. This is certainly true for pancreatic ductal adenocarcinomas (PDAC), where tumour-associated fibroblasts, pancreatic stellate cells and immune cells create an abundant paracrine niche for CSCs via microenvironment-secreted factors. Thus understanding the role that tumour stroma cells play in PDAC development and CSC biology is of utmost importance. DESIGN: Microarray analyses, tumour microarray immunohistochemical assays, in vitro co-culture experiments, recombinant protein treatment approaches and in vivo intervention studies were performed to understand the role that the immunomodulatory cationic antimicrobial peptide 18/LL-37 (hCAP-18/LL-37) plays in PDAC biology. RESULTS: We found that hCAP-18/LL-37 was strongly expressed in the stroma of advanced primary and secondary PDAC tumours and is secreted by immune cells of the stroma (eg, tumour-associated macrophages) in response to tumour growth factor-ß1 and particularly CSC-secreted Nodal/ActivinA. Treatment of pancreatic CSCs with recombinant LL-37 increased pluripotency-associated gene expression, self-renewal, invasion and tumourigenicity via formyl peptide receptor 2 (FPR2)- and P2X purinoceptor 7 receptor (P2X7R)-dependent mechanisms, which could be reversed by inhibiting these receptors. Importantly, in a genetically engineered mouse model of K-Ras-driven pancreatic tumourigenesis, we also showed that tumour formation was inhibited by either reconstituting these mice with bone marrow from cathelicidin-related antimicrobial peptide (ie, murine homologue of hCAP-18/LL-37) knockout mice or by pharmacologically inhibiting FPR2 and P2X7R. CONCLUSIONS: Thus, hCAP-18/LL-37 represents a previously unrecognised PDAC microenvironment factor that plays a critical role in pancreatic CSC-mediated tumourigenesis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Ativinas/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Ductal Pancreático/genética , Autorrenovação Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/genética , Análise Serial de Proteínas , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores de Formil Peptídeo/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise Serial de Tecidos , Fator de Crescimento Transformador beta1/farmacologia , Catelicidinas
6.
Int J Cancer ; 136(4): E161-72, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25053293

RESUMO

The multikinase inhibitor sorafenib is the only effective drug in advanced cases of hepatocellular carcinoma (HCC). However, response differs among patients and effectiveness only implies a delay. We have recently described that sorafenib sensitizes HCC cells to apoptosis. In this work, we have explored the response to this drug of six different liver tumor cell lines to define a phenotypic signature that may predict lack of response in HCC patients. Results have indicated that liver tumor cells that show a mesenchymal-like phenotype, resistance to the suppressor effects of transforming growth factor beta (TGF-ß) and high expression of the stem cell marker CD44 were refractory to sorafenib-induced cell death in in vitro studies, which correlated with lack of response to sorafenib in nude mice xenograft models of human HCC. In contrast, epithelial-like cells expressing the stem-related proteins EpCAM or CD133 were sensitive to sorafenib-induced apoptosis both in vitro and in vivo. A cross-talk between the TGF-ß pathway and the acquisition of a mesenchymal-like phenotype with up-regulation of CD44 expression was found in the HCC cell lines. Targeted CD44 knock-down in the mesenchymal-like cells indicated that CD44 plays an active role in protecting HCC cells from sorafenib-induced apoptosis. However, CD44 effect requires a TGF-ß-induced mesenchymal background, since the only overexpression of CD44 in epithelial-like HCC cells is not sufficient to impair sorafenib-induced cell death. In conclusion, a mesenchymal profile and expression of CD44, linked to activation of the TGF-ß pathway, may predict lack of response to sorafenib in HCC patients.


Assuntos
Antineoplásicos/farmacologia , Receptores de Hialuronatos/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Animais , Apoptose , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Camundongos Nus , Niacinamida/farmacologia , Fenótipo , Sorafenibe , Fator de Crescimento Transformador beta/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Gastroenterology ; 147(5): 1119-33.e4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25127677

RESUMO

BACKGROUND & AIMS: Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. METHODS: We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. RESULTS: Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting differentiation toward an acinar cell program. CONCLUSIONS: In mice, nicotine promotes pancreatic carcinogenesis and tumor development via down-regulation of Gata6 to induce acinar cell dedifferentiation.


Assuntos
Células Acinares/efeitos dos fármacos , Carcinoma Ductal Pancreático/induzido quimicamente , Desdiferenciação Celular/efeitos dos fármacos , Fator de Transcrição GATA6/metabolismo , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Pâncreas/efeitos dos fármacos , Neoplasias Pancreáticas/induzido quimicamente , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/prevenção & controle , Carcinoma Ductal Pancreático/secundário , Linhagem Celular Tumoral , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Transcrição GATA6/deficiência , Fator de Transcrição GATA6/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Metformina/farmacologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Mutação , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/deficiência , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética
8.
Hepatology ; 58(6): 2032-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23813475

RESUMO

UNLABELLED: Transforming growth factor-beta (TGF-ß) is an important regulatory suppressor factor in hepatocytes. However, liver tumor cells develop mechanisms to overcome its suppressor effects and respond to this cytokine by inducing other processes, such as the epithelial-mesenchymal transition (EMT), which contributes to tumor progression and dissemination. Recent studies have placed chemokines and their receptors at the center not only of physiological cell migration but also of pathological processes, such as metastasis in cancer. In particular, CXCR4 and its ligand, stromal cell-derived factor 1α (SDF-1α) / chemokine (C-X-C motif) ligand 12 (CXCL12) have been revealed as regulatory molecules involved in the spreading and progression of a variety of tumors. Here we show that autocrine stimulation of TGF-ß in human liver tumor cells correlates with a mesenchymal-like phenotype, resistance to TGF-ß-induced suppressor effects, and high expression of CXCR4, which is required for TGF-ß-induced cell migration. Silencing of the TGF-ß receptor1 (TGFBR1), or its specific inhibition, recovered the epithelial phenotype and attenuated CXCR4 expression, inhibiting cell migratory capacity. In an experimental mouse model of hepatocarcinogenesis (diethylnitrosamine-induced), tumors showed increased activation of the TGF-ß pathway and enhanced CXCR4 levels. In human hepatocellular carcinoma tumors, high levels of CXCR4 always correlated with activation of the TGF-ß pathway, a less differentiated phenotype, and a cirrhotic background. CXCR4 concentrated at the tumor border and perivascular areas, suggesting its potential involvement in tumor cell dissemination. CONCLUSION: A crosstalk exists among the TGF-ß and CXCR4 pathways in liver tumors, reflecting a novel molecular mechanism that explains the protumorigenic effects of TGF-ß and opens new perspectives for tumor therapy.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas/fisiopatologia , Receptores CXCR4/metabolismo , Fator de Crescimento Transformador beta1/biossíntese , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Quimiocina CXCL12 , Dietilnitrosamina , Feminino , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores CXCR4/biossíntese , Receptores de Fatores de Crescimento Transformadores beta/efeitos dos fármacos
9.
Eur J Cell Biol ; 103(2): 151396, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38359522

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy that accounts for more than 90% of pancreatic cancer diagnoses. Our research is focused on the physico-chemical properties of the tumour microenvironment (TME), including its tumoural extracellular matrix (tECM), as they may have an important impact on the success of cancer therapies. PDAC xenografts and their decellularized tECM offer a great material source for research in terms of biomimicry with the original human tumour. Our aim was to evaluate and quantify the physico-chemical properties of the PDAC TME. Both cellularized (native TME) and decellularized (tECM) patient-derived PDAC xenografts were analyzed. A factorial design of experiments identified an optimal combination of factors for effective xenograft decellularization. Our results provide a complete advance in our understanding of the PDAC TME and its corresponding stroma, showing that it presents an interconnected porous architecture with very low permeability and small pores due to the contractility of the cellular components. This fact provides a potential therapeutic strategy based on the therapeutic agent size.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Microambiente Tumoral , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Animais , Camundongos , Matriz Extracelular/metabolismo
10.
J Biol Chem ; 287(19): 15263-74, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22427664

RESUMO

Transforming growth factor-ß (TGF-ß) plays a dual role in hepatocytes, mediating both tumor suppressor and promoter effects. The suppressor effects of the cytokine can be negatively regulated by activation of survival signals, mostly dependent on tyrosine kinase activity. The aim of our work was to study the role of the protein-tyrosine phosphatase 1B (PTP1B) on the cellular responses to TGF-ß, using for this purpose immortalized neonatal hepatocytes isolated from both PTP1B(+/+) and PTP1B(-/-) mice. We have found that PTP1B deficiency conferred resistance to TGF-ß suppressor effects, such as apoptosis and growth inhibition, correlating with lower Smad2/Smad3 activation. Both responses were recovered in the presence of the general tyrosine kinase inhibitor genistein. PTP1B(-/-) cells showed elevated NF-κB activation in response to TGF-ß. Knockdown of the NF-κB p65 subunit increased cell response in terms of Smads phosphorylation and apoptosis. Interestingly, these effects were accompanied by inhibition of Smad7 up-regulation. In addition, lack of PTP1B promoted an altered NADPH oxidase (NOX) expression pattern in response to TGF-ß, strongly increasing the NOX1/NOX4 ratio, which was reverted by genistein and p65 knockdown. Importantly, NOX1 knockdown inhibited nuclear translocation of p65, promoted Smad phosphorylation, and decreased Smad7 levels. In summary, our results suggest that PTP1B deficiency confers resistance to TGF-ß through Smad inhibition, an effect that is mediated by NOX1-dependent NF-κB activation, which in turn, increases the level of the Smad inhibitor Smad7 and participates in a positive feedback loop on NOX1 up-regulation.


Assuntos
Resistência a Medicamentos/genética , Hepatócitos/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Fator de Crescimento Transformador beta1/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Transformada , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Genisteína/farmacologia , Hepatócitos/citologia , Hepatócitos/metabolismo , Camundongos , Camundongos Knockout , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/deficiência , Interferência de RNA , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
11.
J Interpers Violence ; 38(23-24): 11818-11841, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37537893

RESUMO

There is a clear need for developing a comprehensive, unbiased, and psychometrically sound tool to assess child maltreatment. The aim of this study is to examine the structural validity, internal consistency, and convergent validity of a newly developed child maltreatment assessment instrument. A total of 286 professionals of the child protection system participated in the study, completing a total of 645 cases of children and adolescents. The Adolescents and Children Risk of Abuse and Maltreatment Parental Scale (ACRAM-PS), the Childhood Trauma Questionnaire Short Form (CTQ-SF) and other demographic variables were measured. Structural validity, internal consistency, and convergent validity of the ACRAM-PS were tested. This scale obtained good structural validity, internal consistency, and convergent validity as hypothesized patterns of correlations occurred as expected. This instrument implies a considerable improvement as it is comprehensive, psychometrically sound and, it has been articulated by its own users. It can significantly contribute to establish a common language among professionals, improve multidisciplinary communication, and optimize prevention, detection, and early intervention in child maltreatment.


Assuntos
Maus-Tratos Infantis , Criança , Humanos , Adolescente , Inquéritos e Questionários , Psicometria , Pais , Idioma , Reprodutibilidade dos Testes
12.
Biomed Pharmacother ; 158: 114162, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36571997

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive disease characterized by its metastatic potential and chemoresistance. These traits are partially attributable to the highly tumorigenic pancreatic cancer stem cells (PaCSCs). Interestingly, these cells show unique features in order to sustain their identity and functionality, some of them amenable for therapeutic intervention. Screening of phospho-receptor tyrosine kinases revealed that PaCSCs harbored increased activation of anaplastic lymphoma kinase (ALK). We subsequently demonstrated that oncogenic ALK signaling contributes to tumorigenicity in PDAC patient-derived xenografts (PDXs) by promoting stemness through ligand-dependent activation. Indeed, the ALK ligands midkine (MDK) or pleiotrophin (PTN) increased self-renewal, clonogenicity and CSC frequency in several in vitro local and metastatic PDX models. Conversely, treatment with the clinically-approved ALK inhibitors Crizotinib and Ensartinib decreased PaCSC content and functionality in vitro and in vivo, by inducing cell death. Strikingly, ALK inhibitors sensitized chemoresistant PaCSCs to Gemcitabine, as the most used chemotherapeutic agent for PDAC treatment. Consequently, ALK inhibition delayed tumor relapse after chemotherapy in vivo by effectively decreasing the content of PaCSCs. In summary, our results demonstrate that targeting the MDK/PTN-ALK axis with clinically-approved inhibitors impairs in vivo tumorigenicity and chemoresistance in PDAC suggesting a new treatment approach to improve the long-term survival of PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Quinase do Linfoma Anaplásico , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia , Receptores Proteína Tirosina Quinases , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas
13.
J Exp Clin Cancer Res ; 42(1): 323, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38012687

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a profoundly aggressive and fatal cancer. One of the key factors defining its aggressiveness and resilience against chemotherapy is the existence of cancer stem cells (CSCs). The important task of discovering upstream regulators of stemness that are amenable for targeting in PDAC is essential for the advancement of more potent therapeutic approaches. In this study, we sought to elucidate the function of the nuclear receptor subfamily 5, group A, member 2 (NR5A2) in the context of pancreatic CSCs. METHODS: We modeled human PDAC using primary PDAC cells and CSC-enriched sphere cultures. NR5A2 was genetically silenced or inhibited with Cpd3. Assays included RNA-seq, sphere/colony formation, cell viability/toxicity, real-time PCR, western blot, immunofluorescence, ChIP, CUT&Tag, XF Analysis, lactate production, and in vivo tumorigenicity assays. PDAC models from 18 patients were treated with Cpd3-loaded nanocarriers. RESULTS: Our findings demonstrate that NR5A2 plays a dual role in PDAC. In differentiated cancer cells, NR5A2 promotes cell proliferation by inhibiting CDKN1A. On the other hand, in the CSC population, NR5A2 enhances stemness by upregulating SOX2 through direct binding to its promotor/enhancer region. Additionally, NR5A2 suppresses MYC, leading to the activation of the mitochondrial biogenesis factor PPARGC1A and a shift in metabolism towards oxidative phosphorylation, which is a crucial feature of stemness in PDAC. Importantly, our study shows that the specific NR5A2 inhibitor, Cpd3, sensitizes a significant fraction of PDAC models derived from 18 patients to standard chemotherapy. This treatment approach results in durable remissions and long-term survival. Furthermore, we demonstrate that the expression levels of NR5A2/SOX2 can predict the response to treatment. CONCLUSIONS: The findings of our study highlight the cell context-dependent effects of NR5A2 in PDAC. We have identified a novel pharmacological strategy to modulate SOX2 and MYC levels, which disrupts stemness and prevents relapse in this deadly disease. These insights provide valuable information for the development of targeted therapies for PDAC, offering new hope for improved patient outcomes. A Schematic illustration of the role of NR5A2 in cancer stem cells versus differentiated cancer cells, along with the action of the NR5A2 inhibitor Cpd3. B Overall survival of tumor-bearing mice following allocated treatment. A total of 18 PDX models were treated using a 2 x 1 x 1 approach (two animals per model per treatment); n=36 per group (illustration created with biorender.com ).


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Transdução de Sinais , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Neoplasias Pancreáticas
14.
J Cell Physiol ; 227(4): 1319-25, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21604268

RESUMO

Sorafenib increases survival rate of patients with advanced hepatocellular carcinoma (HCC). The mechanism underlying this effect is not completely understood. In this work we have analyzed the effects of sorafenib on autocrine proliferation and survival of different human HCC cell lines. Our results indicate that sorafenib in vitro counteracts autocrine growth of different tumor cells (Hep3B, HepG2, PLC-PRF-5, SK-Hep1). Arrest in S/G2/M cell cycle phases were observed coincident with cyclin D1 down-regulation. However, sorafenib's main anti-tumor activity seems to occur through cell death induction which correlated with caspase activation, increase in the percentage of hypodiploid cells, activation of BAX and BAK and cytochrome c release from mitochondria to cytosol. In addition, we observed a rise in mRNA and protein levels of the pro-apoptotic "BH3-domain only" PUMA and BIM, as well as decreased protein levels of the anti-apoptotic MCL1 and survivin. PUMA targeting knock-down, by using specific siRNAs, inhibited sorafenib-induced apoptotic features. Moreover, we obtained evidence suggesting that sorafenib also sensitizes HCC cells to the apoptotic activity of transforming growth factor-ß (TGF-ß) through the intrinsic pathway and to tumor necrosis factor-α (TNF) through the extrinsic pathway. Interestingly, sensitization to sorafenib-induced apoptosis is characteristic of liver tumor cells, since untransformed hepatocytes did not respond to sorafenib inducing apoptosis, either alone or in combination with TGF-ß or TNF. Indeed, sorafenib effectiveness in delaying HCC late progression might be partly related to a selectively sensitization of HCC cells to apoptosis by disrupting autocrine signals that protect them from adverse conditions and pro-apoptotic physiological cytokines.


Assuntos
Benzenossulfonatos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Piridinas/farmacologia , Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/fisiologia , Comunicação Autócrina/efeitos dos fármacos , Comunicação Autócrina/fisiologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/fisiopatologia , Niacinamida/análogos & derivados , Compostos de Fenilureia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sorafenibe , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
15.
J Cell Sci ; 123(Pt 20): 3467-77, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20930141

RESUMO

Although TGF-ß suppresses early stages of tumour development, it later contributes to tumour progression when cells become resistant to its suppressive effects. In addition to circumventing TGF-ß-induced growth arrest and apoptosis, malignant tumour cells become capable of undergoing epithelial-to-mesenchymal transition (EMT), favouring invasion and metastasis. Therefore, defining the mechanisms that allow cancer cells to escape from the suppressive effects of TGF-ß is fundamental to understand tumour progression and to design specific therapies. Here, we have examined the role of Snail1 as a suppressor of TGF-ß-induced apoptosis in murine non-transformed hepatocytes, rat and human hepatocarcinoma cell lines and transgenic mice. We show that Snail1 confers resistance to TGF-ß-induced cell death and that it is sufficient to induce EMT in adult hepatocytes, cells otherwise refractory to this transition upon exposure to TGF-ß. Furthermore, we show that Snail1 silencing prevents EMT and restores the cell death response induced by TGF-ß. As Snail1 is a known target of TGF-ß signalling, our data indicate that Snail1 might transduce the tumour-promoting effects of TGF-ß, namely the EMT concomitant with the resistance to cell death.


Assuntos
Apoptose/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Ensaio de Desvio de Mobilidade Eletroforética , Transição Epitelial-Mesenquimal/genética , Hepatócitos/citologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Ratos , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética
16.
Aging Ment Health ; 16(3): 317-26, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22292552

RESUMO

OBJECTIVES: The aims of this article are: (a) to test for the validity of the three constructs involved in the structural model; (b) to test for the effects of both coping strategies and resilient coping on well-being in a sample of elderly, by means of a structural model with latent variables; (c) to empirically study whether a brief scale of resilient coping could predict well-being over and above that predicted by the coping resources. METHODS: The research is a survey design. The sample consisted of 225 non-institutionalized elderly people living in the city of Valencia (Spain). The three constructs measured were: well-being, resilient coping, and coping strategies. RESULTS: The analyses consist of a series of alternative structural models with latent variables with resilience, problem-focused coping, and emotion-focused coping as the potential predictors of well-being as measured by Ryff's well-being scales. Due to parsimony reasons, the model retained is that with a single predictor of well-being: resilient coping. CONCLUSION: A latent variable measuring resilient coping is able to predict a significant and large part of the variance in well-being, without the need of including coping strategies. Results impact on well-being literature of the elderly is discussed.


Assuntos
Adaptação Psicológica , Envelhecimento/psicologia , Modelos Teóricos , Resiliência Psicológica , Idoso , Idoso de 80 Anos ou mais , Coleta de Dados , Emoções , Feminino , Humanos , Masculino , Resolução de Problemas , Espanha
17.
Span J Psychol ; 15(3): 1089-98, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23156917

RESUMO

Development during life-span implies to cope with stressful events, and this coping may be done with several strategies. It could be useful to know if these coping strategies differ as a consequence of personal characteristics. This work uses the Coping with Stress Questionnaire with this aim using a sample of 400 participants. Specifically, the effects of gender and age group (young people, middle age and elderly), as well as its interaction on coping strategies is studied. With regard to age, on one hand, it is hypothesised a decrement in the use of coping strategies centred in problem solving and social support seeking as age increases. On the other hand, the use of emotional coping is hypothesised to increase with age. With respect to gender, it is hypothesised a larger use of emotional coping and social support seeking within women, and a larger use of problem solving within men. A MANOVA found significant effects for the two main effects (gender and age) as well as several interactions. Separate ANOVAs allowed us to test for potential differences in each of the coping strategies measured in the CAE. These results partially supported the hypotheses. Results are discussed in relation to scientific literature on coping, age and gender.


Assuntos
Adaptação Psicológica/fisiologia , Estresse Psicológico/psicologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Emoções/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resolução de Problemas/fisiologia , Fatores Sexuais , Apoio Social , Inquéritos e Questionários , Adulto Jovem
18.
World J Stem Cells ; 14(8): 587-598, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36157911

RESUMO

Medulloblastomas (MBs) are the most prevalent brain tumours in children. They are classified as grade IV, the highest in malignancy, with about 30% metastatic tumours at the time of diagnosis. Cancer stem cells (CSCs) are a small subset of tumour cells that can initiate and support tumour growth. In MB, CSCs contribute to tumour initiation, metastasis, and therapy resistance. Metabolic differences among the different MB groups have started to emerge. Sonic hedgehog tumours show enriched lipid and nucleic acid metabolism pathways, whereas Group 3 MBs upregulate glycolysis, gluconeogenesis, glutamine anabolism, and glut athione-mediated anti-oxidant pathways. Such differences impact the clinical behaviour of MB tumours and can be exploited therapeutically. In this review, we summarise the existing knowledge about metabolic rewiring in MB, with a particular focus on MB-CSCs. Finally, we highlight some of the emerging metabolism-based therapeutic strategies for MB.

19.
J Biol Chem ; 285(32): 24815-24, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20525691

RESUMO

FaO rat hepatoma cells proliferate in the absence of serum through a mechanism that requires activation of the epidermal growth factor receptor (EGFR) pathway. The aim of this work was to analyze the molecular mechanisms that control EGFR activation in these and other liver tumor cells. Reactive oxygen species production is observed a short time after serum withdrawal in FaO cells, coincident with up-regulation of the NADPH oxidase NOX1. NOX1-targeted knockdown, the use of antioxidants, or pharmacological inhibition of NADPH oxidase attenuates autocrine growth, coincident with lower mRNA levels of EGFR and its ligand transforming growth factor-alpha (TGF-alpha) and a decrease in phosphorylation of EGFR. EGFR-targeted knockdown induces similar effects on cell growth and downstream signals to those observed in NOX1-depleted cells. Early NOX1 activation induces both a feedback-positive loop via an Src-ERK pathway that up-regulates its own levels, and a parallel signaling pathway through p38 MAPK and AKT resulting in EGFR and TGF-alpha up-regulation. Human hepatocellular carcinoma cell lines, but not non-tumoral hepatocytes, show autocrine growth upon serum withdrawal, which is also coincident with NOX1 up-regulation that mediates EGFR and TGF-alpha expression. The use of antioxidants, or pharmacological inhibition of NADPH oxidase, effectively attenuates autocrine growth in hepatocellular carcinoma cell lines. In summary, results presented in this study indicate that NOX1 might control autocrine cell growth of liver tumor cells through regulation of the EGFR pathway.


Assuntos
Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidases/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Fígado/metabolismo , NADPH Oxidase 1 , Oxirredução , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
20.
J Hepatol ; 55(2): 351-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21147185

RESUMO

BACKGROUND & AIMS: Transforming growth factor-beta (TGF-ß) induces apoptosis in hepatocytes, a process that is inhibited by the epidermal growth factor receptor (EGFR) pathway. The aim of this work was to ablate EGFR in hepatocellular carcinoma (HCC) cells to understand its role in impairing TGF-ß-induced cell death. METHODS: Response to TGF-ß in terms of apoptosis was analyzed in different HCC cell lines and the effect of canceling EGFR expression was evaluated. RESULTS: TGF-ß induces apoptosis in some HCC cells (such as Hep3B, PLC/PRF/5, Huh7, or SNU449), but it also mediates survival signals, coincident with the up-regulation of EGFR ligands. Inhibition of the EGFR, either by targeted knock-down with specific siRNA or by pharmacological inhibition, significantly enhances apoptotic response. TGF-ß treatment in EGFR targeted knock-down cells correlates with higher levels of the NADPH oxidase NOX4 and changes in the expression profile of BCL-2 and IAP families. However, other HCC cells, such as HepG2, which show over activation of the Ras/ERKs pathway, SK-Hep1, with an endothelial phenotype, or SNU398, where the TGF-ß-Smad signaling is altered, show apoptosis resistance that is not restored through EGFR blockade. CONCLUSIONS: The inhibition of EGFR in HCC may enhance TGF-ß-induced pro-apoptotic signaling. However, this effect may only concern those tumors with an epithelial phenotype which do not bear alterations in TGF-ß signaling nor exhibit an over-activation of the survival pathways downstream of the EGFR.


Assuntos
Carcinoma Hepatocelular/terapia , Receptores ErbB/antagonistas & inibidores , Neoplasias Hepáticas/terapia , Fator de Crescimento Transformador beta/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/fisiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/fisiopatologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genes bcl-2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/fisiopatologia , RNA Interferente Pequeno/genética , Transdução de Sinais , Transcriptoma , Fator de Crescimento Transformador beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA