Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441908

RESUMO

BACKGROUND AND AIMS: Alcohol relapse after surviving an episode of alcohol-associated hepatitis (AH) is common. However, the clinical features, risk factors, and prognostic implications of recurrent alcohol-associated hepatitis (RAH) are not well described. APPROACH AND RESULTS: A registry-based study was done of patients admitted to 28 Spanish hospitals for an episode of AH between 2014 and 2021. Baseline demographics and laboratory variables were collected. Risk factors for RAH were investigated using Cox regression analysis. We analyzed the severity of the index episodes of AH and compared it to that of RAH. Long-term survival was assessed by Kaplan-Meier curves and log-rank tests. A total of 1118 patients were included in the analysis, 125 (11%) of whom developed RAH during follow-up (median: 17 [7-36] months). The incidence of RAH in patients resuming alcohol use was 22%. The median time to recurrence was 14 (8-29) months. Patients with RAH had more psychiatric comorbidities. Risk factors for developing RAH included age <50 years, alcohol use >10 U/d, and history of liver decompensation. RAH was clinically more severe compared to the first AH (higher MELD, more frequent ACLF, and HE). Moreover, alcohol abstinence during follow-up was less common after RAH (18% vs. 45%, p <0.001). Most importantly, long-term mortality was higher in patients who developed RAH (39% vs. 21%, p = 0.026), and presenting with RAH independently predicted high mortality (HR: 1.55 [1.11-2.18]). CONCLUSIONS: RAH is common and has a more aggressive clinical course, including increased mortality. Patients surviving an episode of AH should undergo intense alcohol use disorder therapy to prevent RAH.

2.
Clin Gastroenterol Hepatol ; 22(4): 768-777.e8, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38065374

RESUMO

BACKGROUND & AIMS: Alcoholic foamy degeneration (AFD) is a condition with similar clinical presentation to alcohol-associated hepatitis (AH), but with a specific histologic pattern. Information regarding the prevalence and prognosis of AFD is scarce and there are no tools for a noninvasive diagnosis. METHODS: A cohort of patients admitted to the Hospital Clinic of Barcelona for clinical suspicion of AH who underwent liver biopsy was included. Patients were classified as AFD, AH, or other findings, according to histology. Clinical features, histology, and genetic expression of liver biopsy specimens were analyzed. The accuracy of National Institute on Alcohol Abuse and Alcoholism criteria and laboratory parameters for differential diagnosis were investigated. RESULTS: Of 230 patients with a suspicion of AH, 18 (8%) met histologic criteria for AFD, 184 (80%) had definite AH, and 28 (12%) had other findings. In patients with AFD, massive steatosis was more frequent and the fibrosis stage was lower. AFD was characterized by down-regulation of liver fibrosis and inflammation genes and up-regulation of lipid metabolism and mitochondrial function genes. Patients with AFD had markedly better long-term survival (100% vs 57% in AFD vs AH; P = .002) despite not receiving corticosteroid treatment, even in a model for end-stage liver disease-matched sensitivity analysis. Serum triglyceride levels had an area under the receiver operating characteristic of 0.886 (95% CI, 0.807-0.964) for the diagnosis of AFD, whereas the National Institute on Alcohol Abuse and Alcoholism criteria performed poorly. A 1-step algorithm using triglyceride levels of 225 mg/dL (sensitivity, 0.77; specificity, 0.90; and Youden index, 0.67) is proposed for differential diagnosis. CONCLUSIONS: AFD in the setting of suspicion of AH is not uncommon. A differential diagnosis is important because prognosis and treatment differ largely. Triglyceride levels successfully identify most patients with AFD and may be helpful in decision making.


Assuntos
Doença Hepática Terminal , Hepatite Alcoólica , Humanos , Índice de Gravidade de Doença , Hepatite Alcoólica/patologia , Prognóstico , Triglicerídeos
3.
Hepatology ; 78(3): 878-895, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745935

RESUMO

BACKGROUND AND AIMS: Alcohol-associated liver disease (ALD) accounts for 70% of liver-related deaths in Europe, with no effective approved therapies. Although mitochondrial dysfunction is one of the earliest manifestations of alcohol-induced injury, restoring mitochondrial activity remains a problematic strategy due to oxidative stress. Here, we identify methylation-controlled J protein (MCJ) as a mediator for ALD progression and hypothesize that targeting MCJ may help in recovering mitochondrial fitness without collateral oxidative damage. APPROACH AND RESULTS: C57BL/6 mice [wild-type (Wt)] Mcj knockout and Mcj liver-specific silencing (MCJ-LSS) underwent the NIAAA dietary protocol (Lieber-DeCarli diet containing 5% (vol/vol) ethanol for 10 days, plus a single binge ethanol feeding at day 11). To evaluate the impact of a restored mitochondrial activity in ALD, the liver, gut, and pancreas were characterized, focusing on lipid metabolism, glucose homeostasis, intestinal permeability, and microbiota composition. MCJ, a protein acting as an endogenous negative regulator of mitochondrial respiration, is downregulated in the early stages of ALD and increases with the severity of the disease. Whole-body deficiency of MCJ is detrimental during ALD because it exacerbates the systemic effects of alcohol abuse through altered intestinal permeability, increased endotoxemia, and dysregulation of pancreatic function, which overall worsens liver injury. On the other hand, liver-specific Mcj silencing prevents main ALD hallmarks, that is, mitochondrial dysfunction, steatosis, inflammation, and oxidative stress, as it restores the NAD + /NADH ratio and SIRT1 function, hence preventing de novo lipogenesis and improving lipid oxidation. CONCLUSIONS: Improving mitochondrial respiration by liver-specific Mcj silencing might become a novel therapeutic approach for treating ALD.


Assuntos
Hepatopatias Alcoólicas , Animais , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Etanol/efeitos adversos , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Mitocondriais/metabolismo
4.
J Hepatol ; 79(4): 989-1005, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37302584

RESUMO

BACKGROUND & AIMS: Hepatoblastoma (HB) is the most frequent childhood liver cancer. Patients with aggressive tumors have limited therapeutic options; therefore, a better understanding of HB pathogenesis is needed to improve treatment. HBs have a very low mutational burden; however, epigenetic alterations are increasingly recognized. We aimed to identify epigenetic regulators consistently dysregulated in HB and to evaluate the therapeutic efficacy of their targeting in clinically relevant models. METHODS: We performed a comprehensive transcriptomic analysis of 180 epigenetic genes. Data from fetal, pediatric, adult, peritumoral (n = 72) and tumoral (n = 91) tissues were integrated. Selected epigenetic drugs were tested in HB cells. The most relevant epigenetic target identified was validated in primary HB cells, HB organoids, a patient-derived xenograft model, and a genetic mouse model. Transcriptomic, proteomic and metabolomic mechanistic analyses were performed. RESULTS: Altered expression of genes regulating DNA methylation and histone modifications was consistently observed in association with molecular and clinical features of poor prognosis. The histone methyltransferase G9a was markedly upregulated in tumors with epigenetic and transcriptomic traits of increased malignancy. Pharmacological targeting of G9a significantly inhibited growth of HB cells, organoids and patient-derived xenografts. Development of HB induced by oncogenic forms of ß-catenin and YAP1 was ablated in mice with hepatocyte-specific deletion of G9a. We observed that HBs undergo significant transcriptional rewiring in genes involved in amino acid metabolism and ribosomal biogenesis. G9a inhibition counteracted these pro-tumorigenic adaptations. Mechanistically, G9a targeting potently repressed the expression of c-MYC and ATF4, master regulators of HB metabolic reprogramming. CONCLUSIONS: HBs display a profound dysregulation of the epigenetic machinery. Pharmacological targeting of key epigenetic effectors exposes metabolic vulnerabilities that can be leveraged to improve the treatment of these patients. IMPACT AND IMPLICATIONS: In spite of recent advances in the management of hepatoblastoma (HB), treatment resistance and drug toxicity are still major concerns. This systematic study reveals the remarkable dysregulation in the expression of epigenetic genes in HB tissues. Through pharmacological and genetic experimental approaches, we demonstrate that the histone-lysine-methyltransferase G9a is an excellent drug target in HB, which can also be harnessed to enhance the efficacy of chemotherapy. Furthermore, our study highlights the profound pro-tumorigenic metabolic rewiring of HB cells orchestrated by G9a in coordination with the c-MYC oncogene. From a broader perspective, our findings suggest that anti-G9a therapies may also be effective in other c-MYC-dependent tumors.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Proteômica , Epigênese Genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Metilação de DNA , Carcinogênese/genética
5.
J Hepatol ; 79(4): 1025-1036, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348790

RESUMO

BACKGROUND & AIMS: Ductular reaction expansion is associated with poor prognosis in patients with advanced liver disease. However, the mechanisms promoting biliary cell proliferation are largely unknown. Here, we identify neutrophils as drivers of biliary cell proliferation and the defective wound-healing response. METHODS: The intrahepatic localization of neutrophils was evaluated in patients with chronic liver disease. Neutrophil dynamics were analyzed by intravital microscopy and neutrophil-labeling assays in DDC-treated mice. Neutrophil depletion or inhibition of recruitment was achieved using a Ly6g antibody or a CXCR1/2 inhibitor, respectively. Mice deficient in PAD4 (peptidyl arginine deiminase 4) and ELANE/NE (neutrophil elastase) were used to investigate the mechanisms underlying ductular reaction expansion. RESULTS: In this study we describe a population of ductular reaction-associated neutrophils (DRANs), which are in direct contact with biliary epithelial cells in chronic liver diseases and whose numbers increased in parallel with disease progression. We show that DRANs are immobilized at the site of ductular reaction for a prolonged period of time. In addition, liver neutrophils display a unique phenotypic and transcriptomic profile, showing a decreased phagocytic capacity and increased oxidative burst. Depletion of neutrophils or inhibition of their recruitment reduces DRANs and the expansion of ductular reaction, while mitigating liver fibrosis and angiogenesis. Mechanistically, neutrophils deficient in PAD4 and ELANE abrogate neutrophil-induced biliary cell proliferation, thus indicating the role of neutrophil extracellular traps and elastase release in ductular reaction expansion. CONCLUSIONS: Overall, our study reveals the accumulation of DRANs as a hallmark of advanced liver disease and a potential therapeutic target to mitigate ductular reaction and the maladaptive wound-healing response. IMPACT AND IMPLICATIONS: Our results indicate that neutrophils are highly plastic and can have an extended lifespan. Moreover, we identify a new role of neutrophils as triggers of expansion of the biliary epithelium. Overall, the results of this study indicate that ductular reaction-associated neutrophils (or DRANs) are new players in the maladaptive tissue-healing response in chronic liver injury and may be a potential target for therapeutic interventions to reduce ductular reaction expansion and promote tissue repair in advanced liver disease.


Assuntos
Hepatopatias , Neutrófilos , Animais , Camundongos , Fígado , Proliferação de Células , Epitélio
6.
J Hepatol ; 79(3): 728-740, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37088308

RESUMO

BACKGROUND & AIMS: Loss of hepatocyte identity is associated with impaired liver function in alcohol-related hepatitis (AH). In this context, hepatocyte dedifferentiation gives rise to cells with a hepatobiliary (HB) phenotype expressing biliary and hepatocyte markers and showing immature features. However, the mechanisms and impact of hepatocyte dedifferentiation in liver disease are poorly understood. METHODS: HB cells and ductular reaction (DR) cells were quantified and microdissected from liver biopsies from patients with alcohol-related liver disease (ArLD). Hepatocyte-specific overexpression or deletion of C-X-C motif chemokine receptor 4 (CXCR4), and CXCR4 pharmacological inhibition were assessed in mouse liver injury. Patient-derived and mouse organoids were generated to assess plasticity. RESULTS: Here, we show that HB and DR cells are increased in patients with decompensated cirrhosis and AH, but only HB cells correlate with poor liver function and patients' outcome. Transcriptomic profiling of HB cells revealed the expression of biliary-specific genes and a mild reduction of hepatocyte metabolism. Functional analysis identified pathways involved in hepatocyte reprogramming, inflammation, stemness, and cancer gene programs. The CXCR4 pathway was highly enriched in HB cells and correlated with disease severity and hepatocyte dedifferentiation. In vitro, CXCR4 was associated with a biliary phenotype and loss of hepatocyte features. Liver overexpression of CXCR4 in chronic liver injury decreased the hepatocyte-specific gene expression profile and promoted liver injury. CXCR4 deletion or its pharmacological inhibition ameliorated hepatocyte dedifferentiation and reduced DR and fibrosis progression. CONCLUSIONS: This study shows the association of hepatocyte dedifferentiation with disease progression and poor outcome in AH. Moreover, the transcriptomic profiling of HB cells revealed CXCR4 as a new driver of hepatocyte-to-biliary reprogramming and as a potential therapeutic target to halt hepatocyte dedifferentiation in AH. IMPACT AND IMPLICATIONS: Here, we show that hepatocyte dedifferentiation is associated with disease severity and a reduced synthetic capacity of the liver. Moreover, we identify the CXCR4 pathway as a driver of hepatocyte dedifferentiation and as a therapeutic target in alcohol-related hepatitis. Therefore, this study reveals the importance of preserving strict control over hepatocyte plasticity in order to preserve liver function and promote tissue repair.


Assuntos
Reprogramação Celular , Hepatite Alcoólica , Animais , Camundongos , Hepatite Alcoólica/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Fígado/patologia
7.
Hepatology ; 75(2): 353-368, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34490644

RESUMO

BACKGROUND AND AIMS: Ductular reaction (DR) expands in chronic liver diseases and correlates with disease severity. Besides its potential role in liver regeneration, DR plays a role in the wound-healing response of the liver, promoting periductular fibrosis and inflammatory cell recruitment. However, there is no information regarding its role in intrahepatic angiogenesis. In the current study we investigated the potential contribution of DR cells to hepatic vascular remodeling during chronic liver disease. APPROACH AND RESULTS: In mouse models of liver injury, DR cells express genes involved in angiogenesis. Among angiogenesis-related genes, the expression of Slit2 and its receptor Roundabout 1 (Robo1) was localized in DR cells and neoangiogenic vessels, respectively. The angiogenic role of the Slit2-Robo1 pathway in chronic liver disease was confirmed in ROBO1/2-/+ mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which displayed reduced intrahepatic neovascular density compared to wild-type mice. However, ROBO1/2 deficiency did not affect angiogenesis in partial hepatectomy. In patients with advanced alcohol-associated disease, angiogenesis was associated with DR, and up-regulation of SLIT2-ROBO1 correlated with DR and disease severity. In vitro, human liver-derived organoids produced SLIT2 and induced tube formation of endothelial cells. CONCLUSIONS: Overall, our data indicate that DR expansion promotes angiogenesis through the Slit2-Robo1 pathway and recognize DR cells as key players in the liver wound-healing response.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Hepatopatias Alcoólicas/fisiopatologia , Fígado/fisiopatologia , Neovascularização Patológica/genética , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Animais , Vasos Sanguíneos/metabolismo , Doença Crônica , Progressão da Doença , Expressão Gênica , Ontologia Genética , Hepatite Alcoólica/patologia , Hepatite Alcoólica/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Camundongos , Neovascularização Patológica/patologia , Neovascularização Fisiológica/genética , Proteínas do Tecido Nervoso/metabolismo , Organoides , Gravidade do Paciente , Receptores Imunológicos/metabolismo , Transdução de Sinais/genética , Células-Tronco , Regulação para Cima , Remodelação Vascular , Cicatrização , Proteínas Roundabout
8.
Gastroenterol Hepatol ; 46(4): 322-328, 2023 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-35688395

RESUMO

Unfortunately, there is a gap of understanding in the pathophysiology of chronic liver disease due to the lack of experimental models that exactly mimic the human disease. Additionally, the diagnosis of patients is very poor due to the lack of biomarkers than can detect the disease in early stages. Thus, it is of utmost interest the generation of a multidisciplinary consortium from different countries with a direct translation. The present reports the meeting of the 2021 Iberoamerican Consortium for the study of liver Cirrhosis, held online, in October 2021. The meeting, was focused on the recent advancements in the field of chronic liver disease and cirrhosis with a specific focus on cell pathobiology and liver regeneration, molecular and cellular targets involved in non-alcoholic hepatic steatohepatitis, alcoholic liver disease (ALD), both ALD and western diet, and end-stage liver cirrhosis and hepatocellular carcinoma. In addition, the meeting highlighted recent advances in targeted novel technology (-omics) and opening therapeutic avenues in this field of research.


Assuntos
Hepatopatias Alcoólicas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Cirrose Hepática/etiologia , Hepatopatias Alcoólicas/terapia , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/patologia
9.
Gut ; 71(9): 1856-1866, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34992134

RESUMO

OBJECTIVE: Alcohol-related liver disease (ALD) ranges from never-decompensated ALD (ndALD) to the life-threatening decompensated phenotype, known as alcohol-related hepatitis (AH). A multidimensional study of the clinical, histological and molecular features of these subtypes is lacking. DESIGN: Two large cohorts of patients were recruited in an international, observational multicentre study: a retrospective cohort of patients with ndALD (n=110) and a prospective cohort of patients with AH (n=225). Clinical, analytical, immunohistochemistry and hepatic RNA microarray analysis of both disease phenotypes were performed. RESULTS: Age and mean alcohol intake were similar in both groups. AH patients had greater aspartate amino transferase/alanine amino transferase ratio and lower gamma-glutamyl transferase levels than in ndALD patients. Patients with AH demonstrated profound liver failure and increased mortality. One-year mortality was 10% in ndALD and 50% in AH. Histologically, steatosis grade, ballooning and pericellular fibrosis were similar in both groups, while advanced fibrosis, Mallory-Denk bodies, bilirubinostasis, severe neutrophil infiltration and ductular reaction were more frequent among AH patients. Transcriptome analysis revealed a profound gene dysregulation within both phenotypes when compare to controls. While ndALD was characterised by deregulated expression of genes involved in matrisome and immune response, the development of AH resulted in a marked deregulation of genes involved in hepatocyte reprogramming and bile acid metabolism. CONCLUSIONS: Despite comparable alcohol intake, AH patients presented with worse liver function compared with ndALD patients. Bilirubinostasis, severe fibrosis and ductular reaction were prominent features of AH. AH patients exhibited a more profound deregulation of gene expression compared with ndALD patients.


Assuntos
Hepatite Alcoólica , Fibrose , Hepatite Alcoólica/patologia , Humanos , Fígado/metabolismo , Estudos Prospectivos , Estudos Retrospectivos
10.
Gastroenterology ; 160(5): 1725-1740.e2, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33309778

RESUMO

BACKGROUND & AIMS: We recently showed that alcoholic hepatitis (AH) is characterized by dedifferentiation of hepatocytes and loss of mature functions. Glucose metabolism is tightly regulated in healthy hepatocytes. We hypothesize that AH may lead to metabolic reprogramming of the liver, including dysregulation of glucose metabolism. METHODS: We performed integrated metabolomic and transcriptomic analyses of liver tissue from patients with AH or alcoholic cirrhosis or normal liver tissue from hepatic resection. Focused analyses of chromatin immunoprecipitation coupled to DNA sequencing was performed. Functional in vitro studies were performed in primary rat and human hepatocytes and HepG2 cells. RESULTS: Patients with AH exhibited specific changes in the levels of intermediates of glycolysis/gluconeogenesis, the tricarboxylic acid cycle, and monosaccharide and disaccharide metabolism. Integrated analysis of the transcriptome and metabolome showed the used of alternate energetic pathways, metabolite sinks and bottlenecks, and dysregulated glucose storage in patients with AH. Among genes involved in glucose metabolism, hexokinase domain containing 1 (HKDC1) was identified as the most up-regulated kinase in patients with AH. Histone active promoter and enhancer markers were increased in the HKDC1 genomic region. High HKDC1 levels were associated with the development of acute kidney injury and decreased survival. Increased HKDC1 activity contributed to the accumulation of glucose-6-P and glycogen in primary rat hepatocytes. CONCLUSIONS: Altered metabolite levels and messenger RNA expression of metabolic enzymes suggest the existence of extensive reprogramming of glucose metabolism in AH. Increased HKDC1 expression may contribute to dysregulated glucose metabolism and represents a novel biomarker and therapeutic target for AH.


Assuntos
Desdiferenciação Celular , Metabolismo Energético , Perfilação da Expressão Gênica , Glucose/metabolismo , Hepatite Alcoólica/enzimologia , Hepatócitos/enzimologia , Hexoquinase/metabolismo , Fígado/enzimologia , Metabolômica , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/genética , Adaptação Fisiológica , Animais , Europa (Continente) , Feminino , Regulação Enzimológica da Expressão Gênica , Glucose-6-Fosfato/metabolismo , Glicogênio/metabolismo , Células Hep G2 , Hepatite Alcoólica/genética , Hepatite Alcoólica/patologia , Hepatócitos/patologia , Hexoquinase/genética , Humanos , Fígado/patologia , Masculino , Metaboloma , Pessoa de Meia-Idade , Ratos Wistar , Transcriptoma , Estados Unidos
11.
Hepatology ; 74(1): 296-311, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33219516

RESUMO

BACKGROUND AND AIMS: Bacterial infections are common and severe in cirrhosis, but their pathogenesis is poorly understood. Dysfunction of liver macrophages may play a role, but information about their function in cirrhosis is limited. Our aims were to investigate the specific profile and function of liver macrophages in cirrhosis and their contribution to infections. Macrophages from human cirrhotic livers were characterized phenotypically by transcriptome analysis and flow cytometry; function was assessed in vivo by single photon emission computerized tomography in patients with cirrhosis. Serum levels of specific proteins and expression in peripheral monocytes were determined by ELISA and flow cytometry. In vivo phagocytic activity of liver macrophages was measured by spinning disk intravital microscopy in a mouse model of chronic liver injury. APPROACH AND RESULTS: Liver macrophages from patients with cirrhosis overexpressed proteins related to immune exhaustion, such as programmed death ligand 1 (PD-L1), macrophage receptor with collagenous structure (MARCO), and CD163. In vivo phagocytic activity of liver macrophages in patients with cirrhosis was markedly impaired. Monocytes from patients with cirrhosis showed overexpression of PD-L1 that paralleled disease severity, correlated with its serum levels, and was associated with increased risk of infections. Blockade of PD-L1 with anti-PD-L1 antibody caused a shift in macrophage phenotype toward a less immunosuppressive profile, restored liver macrophage in vivo phagocytic activity, and reduced bacterial dissemination. CONCLUSION: Liver cirrhosis is characterized by a remarkable impairment of phagocytic function of macrophages associated with an immunosuppressive transcriptome profile. The programmed cell death receptor 1/PD-L1 axis plays a major role in the impaired activity of liver macrophages. PD-L1 blockade reverses the immune suppressive profile and increases antimicrobial activity of liver macrophages in cirrhosis.


Assuntos
Antígeno B7-H1/metabolismo , Infecções Bacterianas/imunologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Cirrose Hepática/imunologia , Macrófagos/imunologia , Idoso , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Infecções Bacterianas/prevenção & controle , Biópsia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Fígado/imunologia , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Fagocitose , Cultura Primária de Células , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Índice de Gravidade de Doença
12.
J Hepatol ; 75(4): 912-923, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34129887

RESUMO

BACKGROUND & AIMS: Alcoholic hepatitis (AH) is a life-threatening disease with limited therapeutic options, as the molecular mechanisms leading to death are not well understood. This study evaluates the Hippo/Yes-associated protein (YAP) pathway which has been shown to play a role in liver regeneration. METHOD: The Hippo/YAP pathway was dissected in explants of patients transplanted for AH or alcohol-related cirrhosis and in control livers, using RNA-seq, real-time PCR, western blot, immunohistochemistry and transcriptome analysis after laser microdissection. We transfected primary human hepatocytes with constitutively active YAP (YAPS127A) and treated HepaRG cells and primary hepatocytes isolated from AH livers with a YAP inhibitor. We also used mouse models of ethanol exposure (Lieber de Carli) and liver regeneration (carbon tetrachloride) after hepatocyte transduction of YAPS127A. RESULTS: In AH samples, RNA-seq analysis and immunohistochemistry of total liver and microdissected hepatocytes revealed marked downregulation of the Hippo pathway, demonstrated by lower levels of active MST1 kinase and abnormal activation of YAP in hepatocytes. Overactivation of YAP in hepatocytes in vitro and in vivo led to biliary differentiation and loss of key biological functions such as regeneration capacity. Conversely, a YAP inhibitor restored the mature hepatocyte phenotype in abnormal hepatocytes taken from patients with AH. In ethanol-fed mice, YAP activation using YAPS127A resulted in a loss of hepatocyte differentiation. Hepatocyte proliferation was hampered by YAPS127A after carbon tetrachloride intoxication. CONCLUSION: Aberrant activation of YAP plays an important role in hepatocyte transdifferentiation in AH, through a loss of hepatocyte identity and impaired regeneration. Thus, targeting YAP is a promising strategy for the treatment of patients with AH. LAY SUMMARY: Alcoholic hepatitis is characterized by inflammation and a life-threatening alteration of liver regeneration, although the mechanisms behind this have not been identified. Herein, we show that liver samples from patients with alcoholic hepatitis are characterized by profound deregulation of the Hippo/YAP pathway with uncontrolled activation of YAP in hepatocytes. We used human cell and mouse models to show that inhibition of YAP reverts this hepatocyte defect and could be a novel therapeutic strategy for alcoholic hepatitis.


Assuntos
Hepatite Alcoólica/genética , Hepatócitos/classificação , Proteínas de Sinalização YAP/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , França , Hepatite Alcoólica/diagnóstico , Hepatócitos/metabolismo , Camundongos , Proteínas de Sinalização YAP/efeitos adversos
13.
J Hepatol ; 75(4): 935-959, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34171436

RESUMO

Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) and one of the leading indications for liver transplantation in Western societies. Given the wide use of both prescribed and over the counter drugs, DILI has become a major health issue for which there is a pressing need to find novel and effective therapies. Although significant progress has been made in understanding the molecular mechanisms underlying DILI, our incomplete knowledge of its pathogenesis and inability to predict DILI is largely due to both discordance between human and animal DILI in preclinical drug development and a lack of models that faithfully recapitulate complex pathophysiological features of human DILI. This is exemplified by the hepatotoxicity of acetaminophen (APAP) overdose, a major cause of ALF because of its extensive worldwide use as an analgesic. Despite intensive efforts utilising current animal and in vitro models, the mechanisms involved in the hepatotoxicity of APAP are still not fully understood. In this expert Consensus Statement, which is endorsed by the European Drug-Induced Liver Injury Network, we aim to facilitate and outline clinically impactful discoveries by detailing the requirements for more realistic human-based systems to assess hepatotoxicity and guide future drug safety testing. We present novel insights and discuss major players in APAP pathophysiology, and describe emerging in vitro and in vivo pre-clinical models, as well as advanced imaging and in silico technologies, which may improve prediction of clinical outcomes of DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Consenso , Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Europa (Continente) , Humanos , Fígado/efeitos dos fármacos
14.
Hepatology ; 69(5): 2180-2195, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30565271

RESUMO

Chronic liver diseases are characterized by the expansion of ductular reaction (DR) cells and the expression of liver progenitor cell (LPC) markers. In alcoholic hepatitis (AH), the degree of DR expansion correlates with disease progression and short-term survival. However, little is known about the biological properties of DR cells, their impact on the pathogenesis of human liver disease, and their contribution to tissue repair. In this study, we have evaluated the transcriptomic profile of DR cells by laser capture microdissection in patients with AH and assessed its association with disease progression. The transcriptome analysis of cytokeratin 7-positive (KRT7+ ) DR cells uncovered intrinsic gene pathways expressed in DR and genes associated with alcoholic liver disease progression. Importantly, DR presented a proinflammatory profile with expression of neutrophil recruiting C-X-C motif chemokine ligand (CXC) and C-C motif chemokine ligand chemokines. Moreover, LPC markers correlated with liver expression and circulating levels of inflammatory mediators such as CXCL5. Histologically, DR was associated with neutrophil infiltration at the periportal area. In order to model the DR and to assess its functional role, we generated LPC organoids derived from patients with cirrhosis. Liver organoids mimicked the transcriptomic and proinflammatory profile of DR cells. Conditioned medium from organoids induced neutrophil migration and enhanced cytokine expression in neutrophils. Likewise, neutrophils promoted the proinflammatory profile and the expression of chemokines of liver organoids. Conclusion: Transcriptomic and functional analysis of KRT7+ cells indicate that DR has a proinflammatory profile and promote neutrophil recruitment. These results indicate that DR may be involved in the liver inflammatory response in AH, and suggest that therapeutic strategies targeting DR cells may be useful to mitigate the inflammatory cell recruitment in AH.


Assuntos
Hepatite Alcoólica/imunologia , Fígado/metabolismo , Infiltração de Neutrófilos , Quimiocinas/metabolismo , Estudos de Coortes , Feminino , Hepatite Alcoólica/metabolismo , Humanos , Inflamação/metabolismo , Fígado/citologia , Cirrose Hepática/metabolismo , Masculino , Pessoa de Meia-Idade , Transdução de Sinais , Transcriptoma
15.
Alcohol Clin Exp Res ; 44(4): 856-865, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020641

RESUMO

BACKGROUND: Mitochondria play a fundamental role in the pathogenesis of alcoholic liver disease (ALD). The preservation of functional mitochondria during toxic alcohol insults is essential for cell survival and is maintained by key processes known as mitochondrial dynamics, including fragmentation and fusion, which are regulated by mitochondria-shaping proteins (MSP). We have shown mitochondrial dynamics to be distorted by alcohol in cellular and animal models, but the effect in humans remains unknown. METHODS: Hepatic gene expression of the main MSP involved in the mitochondrial fusion and fragmentation pathways was evaluated in patients with alcoholic hepatitis (AH) by DNA microarray (n = 15) and Reverse Transcription Polymerase Chain Reaction (n = 32). The activation of dynamin-1-like protein (Drp1) was also investigated in mitochondria isolated from liver biopsies of ALD patients (n = 8). The effects of alcohol on mitochondrial dynamics and on MSP protein expression were studied in human precision-cut liver slices (PCLS) exposed for 24 hours to increasing doses of ethanol (EtOH; 50 to 250 mM). RESULTS: A profound hyperactivation of the fragmentation pathway was observed in AH patients, with a significant increase in the expression of Drp1 and its adapters/receptors. The translocation of Drp1 to the mitochondria was also induced in patients with severe ALD and was affected in the PCLS with short-term exposure to EtOH but only mildly. The fusion pathway was not altered in ALD, and this was confirmed in the PCLS model. CONCLUSIONS: The present study reveals the role of mitochondrial dynamics in human ALD, confirming our previous observations in animal and cell culture models of ALD. Taken together, we show that alcohol has a significant impact on the fragmentation pathway, and we confirm Drp1 as a potential therapeutic target in severe ALD.


Assuntos
Dinaminas/genética , GTP Fosfo-Hidrolases/genética , Hepatite Alcoólica/genética , Dinâmica Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , Progressão da Doença , Feminino , Hepatite Alcoólica/patologia , Humanos , Fígado/patologia , Fígado/ultraestrutura , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/patologia , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma
16.
Gut ; 68(4): 708-720, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29475852

RESUMO

OBJECTIVE: Alcoholic liver disease (ALD) is a leading cause of death among chronic liver diseases. However, its pathogenesis has not been completely established. MicroRNAs (miRNAs) are key contributors to liver diseases progression. This study investigated hepatocyte-abundant miRNAs dysregulated by ALD, its impact on hepatocyte injury and the underlying basis. DESIGN: Alcoholic hepatitis (AH) human and animal liver samples and hepatocytes were used to assess miR-148a levels. Pre-miR-148a was delivered specifically to hepatocytes in vivo using lentivirus. Immunoblottings, luciferase reporter assays, chromatin immunoprecipitation and immunofluorescence assays were carried out in cell models. RESULTS: The miRNA profile and PCR analyses enabled us to find substantial decrease of miR-148a in the liver of patients with AH. In mice subjected to Lieber-DeCarli alcohol diet or binge alcohol drinking, miR-148a levels were also markedly reduced. In cultured hepatocytes and mouse livers, alcohol exposure inhibited forkhead box protein O1 (FoxO1) expression, which correlated with miR-148a levels and significantly decreased in human AH specimens. FoxO1 was identified as a transcription factor for MIR148A transactivation. MiR-148a directly inhibited thioredoxin-interacting protein (TXNIP) expression. Consequently, treatment of hepatocytes with ethanol resulted in TXNIP overexpression, activating NLRP3 inflammasome and caspase-1-mediated pyroptosis. These events were reversed by miR-148a mimic or TXNIP small-interfering RNA transfection. Hepatocyte-specific delivery of miR-148a to mice abrogated alcohol-induced TXNIP overexpression and inflammasome activation, attenuating liver injury. CONCLUSION: Alcohol decreases miR-148a expression in hepatocytes through FoxO1, facilitating TXNIP overexpression and NLRP3 inflammasome activation, which induces hepatocyte pyroptosis. Our findings provide information on novel targets for reducing incidence and progression of ALD.


Assuntos
Proteínas de Transporte/metabolismo , Hepatite Alcoólica/metabolismo , Hepatócitos/metabolismo , Inflamassomos/metabolismo , Piroptose , Tiorredoxinas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Progressão da Doença , Imunofluorescência , Humanos , Immunoblotting , Camundongos , MicroRNAs , Reação em Cadeia da Polimerase
17.
Hepatology ; 68(2): 691-706, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29420849

RESUMO

MicroRNA 155 (miR-155) is involved in immune and inflammatory diseases and is associated with liver fibrosis and steatohepatitis. However, the mechanisms involved in miR-155 regulation of liver injury are largely unknown. The role of miR-155 in acute liver injury was assessed in wild-type (WT), miR-155-/- , and miR-155-/- mice transplanted with WT bone marrow. Additionally, miR-155 expression was evaluated in liver tissue and peripheral blood mononuclear cells of patients with autoimmune hepatitis. Concanavalin A, but not acetaminophen, treatment increased the expression of miR-155 in liver tissue of WT mice. Concanavalin A induced increases in cell death, liver aminotransferases, and expression of proinflammatory cytokines (chemokine [C-X-C motif] ligands 1, 5, 9, 10, and 11; chemokine [C-C motif] ligands 2 and 20; and intercellular cell adhesion molecule 1) in miR-155-/- compared to WT mice. Importantly, these animals showed a significant decrease in cluster of differentiation 4-positive/chemokine (C-X-C motif) receptor 3-positive and forkhead box p3-positive cell recruitment but no changes in other inflammatory cell populations. Mechanistically, miR-155-deficient regulatory T cells showed increased SH2 domain-containing inositol 5-phosphatase 1 expression, a known target of miR-155. Inhibition of SH2 domain-containing inositol 5-phosphatase 1 in miR-155-/- mice restored forkhead box p3 recruitment and reduced liver cytokine expression. Transplantation of bone marrow from WT animals into miR-155-/- mice partially reversed the effect of concanavalin A on miR-155-/- mice as assessed by proinflammatory cytokines and cell death protein expression. Patients with autoimmune hepatitis showed a marked increase in miR-155 expression in the liver but reduced expression of miR-155 in peripheral blood mononuclear cells. CONCLUSION: miR-155 expression is altered in both liver tissue and circulating inflammatory cells during liver injury, thus regulating inflammatory cell recruitment and liver damage; these results suggest that maintaining miR-155 expression in inflammatory cells might be a potential strategy to modulate liver injury. (Hepatology 2018).


Assuntos
Hepatite Autoimune/metabolismo , Hepatopatias/metabolismo , Fígado/metabolismo , MicroRNAs/metabolismo , Adulto , Idoso , Animais , Concanavalina A/farmacologia , Citocinas/metabolismo , Feminino , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Hepatopatias/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Transdução de Sinais
18.
Ann Hepatol ; 18(1): 144-154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31113584

RESUMO

INTRODUCTION AND AIMS: Alcoholic hepatitis is the most severe manifestation of alcoholic liver disease. Unfortunately, there are still some unresolved issues in the diagnosis and management of this disease, such as the need of histological diagnosis, an accurate prognostic stratification, and the development of novel targeted therapies. The present study aimed at addressing these issues by means of metabolomics, a novel high-throughput approach useful in other liver diseases. MATERIAL AND METHODS: 64 patients with biopsy-proven alcoholic hepatitis were included and compared with 26 patients with decompensated alcoholic cirrhosis without superimposed alcoholic hepatitis, which was ruled out by liver biopsy. RESULTS: The comparison of the metabolic profiles of patients with alcoholic hepatitis and decompensated cirrhosis showed marked differences between both groups. Importantly, metabolic differences were found among alcoholic hepatitis patients when subjects were stratified according to 90-day survival. Based on these findings, two non-invasive signatures were developed. The first one allowed an accurate non-invasive diagnosis of alcoholic hepatitis (AUROC 0.932; 95% CI 0.901-0.963). The second signature showed a good performance in the prognostic stratification of patients with alcoholic hepatitis (AUROC 0.963; 95% CI 0.895-1.000). CONCLUSIONS: Signatures based on metabolomics allowed an accurate non-invasive diagnosis and prognostic stratification of alcoholic hepatitis. The differences observed in the metabolic profile of the patients according to the presence and severity of alcoholic hepatitis are related with different mechanisms involved in the pathophysiology of alcoholic hepatitis such as peroxisomal activity, synthesis of inflammatory mediators or oxidation. This information could be useful for the development of novel targeted therapies.


Assuntos
Hepatite Alcoólica/diagnóstico , Lipidômica/métodos , Lipídeos/análise , Fígado/patologia , Biomarcadores/análise , Biópsia , Cromatografia Líquida de Alta Pressão , Feminino , Seguimentos , Hepatite Alcoólica/sangue , Hepatite Alcoólica/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Reprodutibilidade dos Testes , Estudos Retrospectivos , Espanha/epidemiologia , Taxa de Sobrevida/tendências
20.
Hepatology ; 66(2): 555-563, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28120471

RESUMO

The diagnosis of alcoholic hepatitis (AH) often requires a transjugular liver biopsy (TJLB), a procedure that is not always readily accessible. We analyzed plasma biomarkers to estimate the presence of histological features of AH among patients with clinical suspicion of AH. Using enzyme-linked immunosorbent assay, we tested M65 and M30 (circulating fragments of cytokeratin-18) and their respective fraction carried by microvesicles (MVs), CCL20 and TREM1. Leukocyte, platelet, and endothelial-derived MVs were quantified by way of flow cytometry. Test and validation cohorts prospectively included patients with clinical features of AH undergoing TJLB. In the test cohort, 46 of 83 (55%) patients showed histological features of AH. Age, bilirubin, INR, and creatinine (ABIC) score was B or C in 83%. Patients with histologically proven AH had higher levels of total and MV-bound M65 and total and MV-bound M30 and CCL20 than those without (P < 0.001 for all tests). Levels of TREM-1 and of subpopulations of MVs were not different between groups. M65 and M30 both had an area under the receiver operating characteristics curve of 0.84 to estimate the presence of AH. For M65, a cutoff of 2000 IU/L had a positive predictive value of 91%, whereas a cutoff of 641 IU/L had a negative predictive value of 88%. In the validation cohort, AH was histologically confirmed in 48 of 68 (71%) patients. ABIC score was B or C in 69% of patients. For M65, the above cutoffs had a diagnostic accuracy of 81%. Even better results were obtained in patients with suspicion of severe AH (ABIC B or C) in both cohorts. CONCLUSION: Plasma levels of cytokeratin-18 fragments are reliable noninvasive markers of AH. Using the proposed cutoffs for M65, two thirds of TJLB can be avoided, which can be useful in centers where this technique is not readily available. (Hepatology 2017;66:555-563).


Assuntos
Hepatite Alcoólica/sangue , Hepatite Alcoólica/patologia , Queratina-18/sangue , Fragmentos de Peptídeos/sangue , Biomarcadores/sangue , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , França , Hepatite Alcoólica/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Curva ROC , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA