Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Rev Mol Cell Biol ; 21(1): 43-58, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31754261

RESUMO

ATPases associated with diverse cellular activities (AAA+ proteins) are macromolecular machines that convert the chemical energy contained in ATP molecules into powerful mechanical forces to remodel a vast array of cellular substrates, including protein aggregates, macromolecular complexes and polymers. AAA+ proteins have key functionalities encompassing unfolding and disassembly of such substrates in different subcellular localizations and, hence, power a plethora of fundamental cellular processes, including protein quality control, cytoskeleton remodelling and membrane dynamics. Over the past 35 years, many of the key elements required for AAA+ activity have been identified through genetic, biochemical and structural analyses. However, how ATP powers substrate remodelling and whether a shared mechanism underlies the functional diversity of the AAA+ superfamily were uncertain. Advances in cryo-electron microscopy have enabled high-resolution structure determination of AAA+ proteins trapped in the act of processing substrates, revealing a conserved core mechanism of action. It has also become apparent that this common mechanistic principle is structurally adjusted to carry out a diverse array of biological functions. Here, we review how substrate-bound structures of AAA+ proteins have expanded our understanding of ATP-driven protein remodelling.


Assuntos
Proteínas AAA/química , Proteínas AAA/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Microscopia Crioeletrônica , Humanos , Hidrólise , Modelos Moleculares , Conformação Proteica
2.
Mol Cell ; 83(15): 2753-2767.e10, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37478846

RESUMO

Nuclear hormone receptors (NRs) are ligand-binding transcription factors that are widely targeted therapeutically. Agonist binding triggers NR activation and subsequent degradation by unknown ligand-dependent ubiquitin ligase machinery. NR degradation is critical for therapeutic efficacy in malignancies that are driven by retinoic acid and estrogen receptors. Here, we demonstrate the ubiquitin ligase UBR5 drives degradation of multiple agonist-bound NRs, including the retinoic acid receptor alpha (RARA), retinoid x receptor alpha (RXRA), glucocorticoid, estrogen, liver-X, progesterone, and vitamin D receptors. We present the high-resolution cryo-EMstructure of full-length human UBR5 and a negative stain model representing its interaction with RARA/RXRA. Agonist ligands induce sequential, mutually exclusive recruitment of nuclear coactivators (NCOAs) and UBR5 to chromatin to regulate transcriptional networks. Other pharmacological ligands such as selective estrogen receptor degraders (SERDs) degrade their receptors through differential recruitment of UBR5 or RNF111. We establish the UBR5 transcriptional regulatory hub as a common mediator and regulator of NR-induced transcription.


Assuntos
Cromatina , Fatores de Transcrição , Humanos , Ligantes , Cromatina/genética , Fatores de Transcrição/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Ubiquitinas , Ubiquitina-Proteína Ligases/genética
3.
Proc Natl Acad Sci U S A ; 114(7): 1560-1565, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28143926

RESUMO

The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ∼24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here we show that CRY1 binds directly to the PAS domain core of CLOCK:BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solution X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.


Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Relógios Circadianos/genética , Criptocromos/genética , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Células Sf9 , Spodoptera
4.
Proc Natl Acad Sci U S A ; 114(33): 8776-8781, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28751364

RESUMO

Nuclear hormone receptors (NRs) regulate physiology by sensing lipophilic ligands and adapting cellular transcription appropriately. A growing understanding of the impact of circadian clocks on mammalian transcription has sparked interest in the interregulation of transcriptional programs. Mammalian clocks are based on a transcriptional feedback loop featuring the transcriptional activators circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like 1 (BMAL1), and transcriptional repressors cryptochrome (CRY) and period (PER). CRY1 and CRY2 bind independently of other core clock factors to many genomic sites, which are enriched for NR recognition motifs. Here we report that CRY1/2 serve as corepressors for many NRs, indicating a new facet of circadian control of NR-mediated regulation of metabolism and physiology, and specifically contribute to diurnal modulation of drug metabolism.


Assuntos
Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiologia , Criptocromos/metabolismo , Proteínas Circadianas Period/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcrição Gênica/fisiologia , Fatores de Transcrição ARNTL/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Relógios Circadianos/fisiologia , Retroalimentação Fisiológica/fisiologia , Feminino , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Células Hep G2 , Humanos , Masculino , Camundongos , Proteínas Nucleares/metabolismo , Transativadores/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(10): 2756-61, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26903623

RESUMO

The suprachiasmatic nucleus (SCN) defines 24 h of time via a transcriptional/posttranslational feedback loop in which transactivation of Per (period) and Cry (cryptochrome) genes by BMAL1-CLOCK complexes is suppressed by PER-CRY complexes. The molecular/structural basis of how circadian protein complexes function is poorly understood. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutation, early doors (Edo), in the PER-ARNT-SIM (PAS) domain dimerization region of period 2 (PER2) (I324N) that accelerates the circadian clock of Per2(Edo/Edo) mice by 1.5 h. Structural and biophysical analyses revealed that Edo alters the packing of the highly conserved interdomain linker of the PER2 PAS core such that, although PER2(Edo) complexes with clock proteins, its vulnerability to degradation mediated by casein kinase 1ε (CSNK1E) is increased. The functional relevance of this mutation is revealed by the ultrashort (<19 h) but robust circadian rhythms in Per2(Edo/Edo); Csnk1e(Tau/Tau) mice and the SCN. These periods are unprecedented in mice. Thus, Per2(Edo) reveals a direct causal link between the molecular structure of the PER2 PAS core and the pace of SCN circadian timekeeping.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Mutação de Sentido Incorreto , Proteínas Circadianas Period/genética , Sequência de Aminoácidos , Animais , Western Blotting , Células COS , Caseína Quinase 1 épsilon/genética , Caseína Quinase 1 épsilon/metabolismo , Chlorocebus aethiops , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Dados de Sequência Molecular , Atividade Motora/genética , Atividade Motora/fisiologia , Proteínas Circadianas Period/química , Proteínas Circadianas Period/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiopatologia
6.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895384

RESUMO

Circadian disruption enhances cancer risk, and many tumors exhibit disordered circadian gene expression. We show rhythmic gene expression is unexpectedly robust in clear cell renal cell carcinoma (ccRCC). Furthermore, the clock gene BMAL1 is higher in ccRCC than in healthy kidneys, unlike in other tumor types. BMAL1 is closely related to ARNT, and we show that BMAL1-HIF2α regulates a subset of HIF2α target genes in ccRCC cells. Depletion of BMAL1 reprograms HIF2α chromatin association and target gene expression and reduces ccRCC growth in culture and in xenografts. Analysis of pre-existing data reveals higher BMAL1 in patient-derived xenografts that are sensitive to growth suppression by a HIF2α antagonist (PT2399). We show that BMAL1-HIF2α is more sensitive than ARNT-HIF2α to suppression by PT2399, and increasing BMAL1 sensitizes 786O cells to growth inhibition by PT2399. Together, these findings indicate that an alternate HIF2α heterodimer containing the circadian partner BMAL1 contributes to HIF2α activity, growth, and sensitivity to HIF2α antagonist drugs in ccRCC cells.

7.
Nat Struct Mol Biol ; 29(8): 759-766, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35864165

RESUMO

The AAA+ family member KaiC is the central pacemaker for circadian rhythms in the cyanobacterium Synechococcus elongatus. Composed of two hexameric rings of adenosine triphosphatase (ATPase) domains with tightly coupled activities, KaiC undergoes a cycle of autophosphorylation and autodephosphorylation on its C-terminal (CII) domain that restricts binding of clock proteins on its N-terminal (CI) domain to the evening. Here, we use cryogenic-electron microscopy to investigate how daytime and nighttime states of CII regulate KaiB binding on CI. We find that the CII hexamer is destabilized during the day but takes on a rigidified C2-symmetric state at night, concomitant with ring-ring compression. Residues at the CI-CII interface are required for phospho-dependent KaiB association, coupling ATPase activity on CI to cooperative KaiB recruitment. Together, these studies clarify a key step in the regulation of cyanobacterial circadian rhythms by KaiC phosphorylation.


Assuntos
Relógios Circadianos , Synechococcus , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Fosforilação , Synechococcus/metabolismo
8.
Nat Struct Mol Biol ; 27(4): 400, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32203494

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Elife ; 92020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32101164

RESUMO

Mammalian circadian rhythms are generated by a transcription-based feedback loop in which CLOCK:BMAL1 drives transcription of its repressors (PER1/2, CRY1/2), which ultimately interact with CLOCK:BMAL1 to close the feedback loop with ~24 hr periodicity. Here we pinpoint a key difference between CRY1 and CRY2 that underlies their differential strengths as transcriptional repressors. Both cryptochromes bind the BMAL1 transactivation domain similarly to sequester it from coactivators and repress CLOCK:BMAL1 activity. However, we find that CRY1 is recruited with much higher affinity to the PAS domain core of CLOCK:BMAL1, allowing it to serve as a stronger repressor that lengthens circadian period. We discovered a dynamic serine-rich loop adjacent to the secondary pocket in the photolyase homology region (PHR) domain that regulates differential binding of cryptochromes to the PAS domain core of CLOCK:BMAL1. Notably, binding of the co-repressor PER2 remodels the serine loop of CRY2, making it more CRY1-like and enhancing its affinity for CLOCK:BMAL1.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Proteínas CLOCK/fisiologia , Ritmo Circadiano , Criptocromos/metabolismo , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiologia , Criptocromos/química , Criptocromos/fisiologia , Camundongos , Estrutura Terciária de Proteína , Serina/metabolismo
10.
Nat Struct Mol Biol ; 26(8): 671-678, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285604

RESUMO

The AAA+ ATPase spastin remodels microtubule arrays through severing and its mutation is the most common cause of hereditary spastic paraplegias (HSP). Polyglutamylation of the tubulin C-terminal tail recruits spastin to microtubules and modulates severing activity. Here, we present a ~3.2 Å resolution cryo-EM structure of the Drosophila melanogaster spastin hexamer with a polyglutamate peptide bound in its central pore. Two electropositive loops arranged in a double-helical staircase coordinate the substrate sidechains. The structure reveals how concurrent nucleotide and substrate binding organizes the conserved spastin pore loops into an ordered network that is allosterically coupled to oligomerization, and suggests how tubulin tail engagement activates spastin for microtubule disassembly. This allosteric coupling may apply generally in organizing AAA+ protein translocases into their active conformations. We show that this allosteric network is essential for severing and is a hotspot for HSP mutations.


Assuntos
Adenosina Trifosfatases/ultraestrutura , Proteínas de Drosophila/ultraestrutura , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Regulação Alostérica , Animais , Microscopia Crioeletrônica , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Mutação , Ácido Poliglutâmico/metabolismo , Polimerização , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Especificidade por Substrato , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA