Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gene Ther ; 29(1-2): 94-105, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34421119

RESUMO

Adeno-associated virus (AAV)-based gene therapy vectors are replication-incompetent and thus pose minimal risk for horizontal transmission or release into the environment. In studies with AAV5-FVIII-SQ (valoctocogene roxaparvovec), an investigational gene therapy for hemophilia A, residual vector DNA was detectable in blood, secreta, and excreta, but it remained unclear how long structurally intact AAV5 vector capsids were present. Since a comprehensive assessment of vector shedding is required by regulatory agencies, we developed a new method (termed iqPCR) that utilizes capsid-directed immunocapture followed by qPCR amplification of encapsidated DNA. The limit of detection for AAV5 vector capsids was 1.17E+04 and 2.33E+04 vg/mL in plasma and semen, respectively. Acceptable precision, accuracy, selectivity, and specificity were verified; up to 1.00E+09 vg/mL non-encapsidated vector DNA showed no interference. Anti-AAV5 antibody plasma concentrations above 141 ng/mL decreased AAV5 capsid quantification, suggesting that iqPCR mainly detects free capsids and not those complexed with antibodies. In a clinical study, AAV5-FVIII-SQ capsids were found in plasma and semen but became undetectable within nine weeks after dose administration. Hence, iqPCR monitors the presence and shedding kinetics of intact vector capsids following AAV gene therapy and informs the potential risk for horizontal transmission.


Assuntos
Fator VIII , Hemofilia A , Capsídeo , Proteínas do Capsídeo/genética , Dependovirus/genética , Fator VIII/genética , Fator VIII/uso terapêutico , Terapia Genética/métodos , Vetores Genéticos/genética , Hemofilia A/genética , Hemofilia A/terapia , Humanos
2.
Mol Ther ; 26(2): 496-509, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29292164

RESUMO

Hemophilia A is an X-linked bleeding disorder caused by mutations in the gene encoding the factor VIII (FVIII) coagulation protein. Bleeding episodes in patients are reduced by prophylactic therapy or treated acutely using recombinant or plasma-derived FVIII. We have made an adeno-associated virus 5 vector containing a B domain-deleted (BDD) FVIII gene (BMN 270) with a liver-specific promoter. BMN 270 injected into hemophilic mice resulted in a dose-dependent expression of BDD FVIII protein and a corresponding correction of bleeding time and blood loss. At the highest dose tested, complete correction was achieved. Similar corrections in bleeding were observed at approximately the same plasma levels of FVIII protein produced either endogenously by BMN 270 or following exogenous administration of recombinant BDD FVIII. No evidence of liver dysfunction or hepatocyte endoplasmic reticulum stress was observed. Comparable doses in primates produced similar levels of circulating FVIII. These preclinical data support evaluation of BMN 270 in hemophilia A patients.


Assuntos
Fator VIII/genética , Terapia Genética , Hemofilia A/genética , Hemofilia A/terapia , Fragmentos de Peptídeos/genética , Animais , Apoptose/genética , Linhagem Celular , Dependovirus/genética , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Expressão Gênica , Ordem dos Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Hemofilia A/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/sangue , Primatas , Regiões Promotoras Genéticas
3.
Blood Adv ; 8(17): 4606-4615, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39024543

RESUMO

ABSTRACT: Following systemically administered adeno-associated virus gene therapy, vector particles are widely distributed, raising concerns about horizontal or germline vector transmission. Characterization of biodistribution and kinetics of vector DNA in body fluids can address these concerns and provide insights into vector behavior in accessible samples. We investigated biodistribution and vector shedding profile of valoctocogene roxaparvovec in men with severe hemophilia A enrolled in the phase 3 GENEr8-1 trial. Participants (n = 134) received a single 6 × 1013 vector genome (vg)/kg infusion and were assessed over 3 years. Vector DNA was measured using 4 different assays. Total vector DNA was evaluated in blood, saliva, stool, semen, and urine by quantitative polymerase chain reaction (qPCR). Encapsidated vector DNA was measured in plasma and semen with immunocapture-based qPCR. Contiguity of vgs and assembly of inverted terminal repeat fusions were measured in whole blood and peripheral blood mononuclear cells (PBMCs) using multicolor digital PCR. Median peak vector DNA levels observed 1 to 8 days after dosing were highest in blood, followed by saliva, semen, stool, and urine. Concentrations declined steadily. Encapsidated vector DNA cleared faster than total vector DNA, achieving clearance by ≤12 weeks in plasma and semen. Predominant vector genome forms transitioned from noncontiguous to full-length over time in whole blood and PBMCs, indicating formation of stable circularized episomes within nucleated cells. The replication-incompetent nature of valoctocogene roxaparvovec, coupled with steady clearance of total and encapsidated vector DNA from shedding matrices, indicates transmission risk is low. This trial was registered at www.ClinicalTrials.gov as #NCT03370913.


Assuntos
Vetores Genéticos , Hemofilia A , Humanos , Hemofilia A/terapia , Masculino , Vetores Genéticos/farmacocinética , Terapia Genética , Dependovirus/genética , Distribuição Tecidual , Adulto
4.
Mol Ther Methods Clin Dev ; 13: 440-452, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31193016

RESUMO

Adeno-associated virus (AAV)-based vectors are widely used for gene therapy, but the effect of pre-existing antibodies resulting from exposure to wild-type AAV is unclear. In addition, other poorly defined plasma factors could inhibit AAV vector transduction where antibodies are not detected. To better define the relationship between various forms of pre-existing AAV immunity and gene transfer, we studied valoctocogene roxaparvovec (BMN 270) in cynomolgus monkeys with varying pre-dose levels of neutralizing anti-AAV antibodies and non-antibody transduction inhibitors. BMN 270 is an AAV5-based vector for treating hemophilia A that encodes human B domain-deleted factor VIII (FVIII-SQ). After infusion of BMN 270 (6.0 × 1013 vg/kg) into animals with pre-existing anti-AAV5 antibodies, there was a mean decrease in maximal FVIII-SQ plasma concentration (Cmax) and AUC of 74.8% and 66.9%, respectively, compared with non-immune control animals, and vector genomes in the liver were reduced. In contrast, animals with only non-antibody transduction inhibitors showed FVIII-SQ plasma concentrations and liver vector copies comparable with those of controls. These results demonstrate that animals without AAV5 antibodies are likely responders to AAV5 gene therapy, regardless of other inhibiting plasma factors. The biological threshold for tolerable AAV5 antibody levels varied between individual animals and should be evaluated further in clinical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA