Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37997706

RESUMO

Sperm with normal morphology and motility are essential for successful fertilization, and the strong attachment of the sperm head-tail coupling apparatus to the nuclear envelope during spermatogenesis is required to ensure the integrity of sperm for capacitation and fertilization. Here, we report that Arrdc5 is associated with spermatogenesis. The Arrdc5 knockout mouse model showed male infertility characterized by a high bent-head rate and reduced motility in sperm, which led to capacitation defects and subsequent fertilization failure. Through mass spectrometry, we found that ARRDC5 affects spermatogenesis by affecting NDC1 and SUN5. We further found that ARRDC5 might affect the vesicle-trafficking protein SEC22A-mediated transport and localization of NDC1, SUN5 and other head-tail coupling apparatus-related proteins that are responsible for initiating the attachment of the sperm head and tail. We finally performed intracytoplasmic sperm injection as a way to explore therapeutic strategies. Our findings demonstrate the essential role and the underlying molecular mechanism of ARRDC5 in anchoring the sperm head to the tail during spermatogenesis.


Assuntos
Infertilidade Masculina , Sêmen , Humanos , Animais , Camundongos , Masculino , Sêmen/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Cabeça do Espermatozoide/metabolismo , Proteínas/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Camundongos Knockout , Proteínas de Membrana/metabolismo
2.
Development ; 150(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37218508

RESUMO

The accumulation and storage of maternal mRNA is crucial for oocyte maturation and embryonic development. PATL2 is an oocyte-specific RNA-binding protein, and previous studies have confirmed that PATL2 mutation in humans and knockout mice cause oocyte maturation arrest or embryonic development arrest, respectively. However, the physiological function of PATL2 in the process of oocyte maturation and embryonic development is largely unknown. Here, we report that PATL2 is highly expressed in growing oocytes and couples with EIF4E and CPEB1 to regulate maternal mRNA expression in immature oocytes. The germinal vesicle oocytes from Patl2-/- mice exhibit decreasing maternal mRNA expression and reduced levels of protein synthesis. We further confirmed that PATL2 phosphorylation occurs in the oocyte maturation process and identified the S279 phosphorylation site using phosphoproteomics. We found that the S279D mutation decreased the protein level of PATL2 and led to subfertility in Palt2S279D knock-in mice. Our work reveals the previously unrecognized role of PATL2 in regulating the maternal transcriptome and shows that phosphorylation of PATL2 leads to the regulation of PATL2 protein levels via ubiquitin-mediated proteasomal degradation in oocytes.


Assuntos
Fator de Iniciação 4E em Eucariotos , Proteínas Nucleares , RNA Mensageiro Estocado , Proteínas de Ligação a RNA , Animais , Feminino , Humanos , Camundongos , Gravidez , Fator de Iniciação 4E em Eucariotos/metabolismo , Homeostase , Camundongos Knockout , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro Estocado/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
3.
Hum Mol Genet ; 32(14): 2326-2334, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37133443

RESUMO

Fertilization is a fundamental process of development, and the blocking mechanisms act at the zona pellucida (ZP) and plasma membrane of the egg to prevent any additional sperm from binding, permeating and fusing after fertilization. In clinical practice, some couples undergoing recurrent IVF failures that mature oocytes had abnormal fertilization for unknown reason. Ovastacin encoded by ASTL cleave the ZP protein ZP2 and play a key role in preventing polyspermy. Here, we identified bi-allelic variants in ASTL that are mainly characterized by fertilization problems in humans. All four independent affected individuals had bi-allelic frameshift variants or predicted damaging missense variants, which follow a Mendelian recessive inheritance pattern. The frameshift variants significantly decreased the quantity of ASTL protein in vitro. And all missense variants affected the enzymatic activity that cleaves ZP2 in mouse egg in vitro. Three knock-in female mice (corresponding to three missense variants in patients) all show subfertility due to low embryo developmental potential. This work presents strong evidence that pathogenic variants in ASTL cause female infertility and provides a new genetic marker for the diagnosis of fertilization problems.


Assuntos
Infertilidade Feminina , Sêmen , Humanos , Masculino , Feminino , Camundongos , Animais , Glicoproteínas da Zona Pelúcida/genética , Glicoproteínas da Zona Pelúcida/metabolismo , Sêmen/metabolismo , Oócitos/metabolismo , Infertilidade Feminina/genética , Fertilização/genética , Metaloproteases/genética
4.
Cell Mol Life Sci ; 81(1): 174, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597936

RESUMO

Mature spermatozoa with normal morphology and motility are essential for male reproduction. The epididymis has an important role in the proper maturation and function of spermatozoa for fertilization. However, factors related to the processes involved in spermatozoa modifications are still unclear. Here we demonstrated that CCDC28A, a member of the CCDC family proteins, is highly expressed in testes and the CCDC28A deletion leads to male infertility. We found CCDC28A deletion had a mild effect on spermatogenesis. And epididymal sperm collected from Ccdc28a-/- mice showed bent sperm heads, acrosomal defects, reduced motility and decreased in vitro fertilization competence whereas their axoneme, outer dense fibers, and fibrous sheath were all normal. Furthermore, we found that CCDC28A interacted with sperm acrosome membrane-associated protein 1 (SPACA1) and glycogen synthase kinase 3a (GSK3A), and deficiencies in both proteins in mice led to bent heads and abnormal acrosomes, respectively. Altogether, our results reveal the essential role of CCDC28A in regulating sperm morphology and motility and suggesting a potential marker for male infertility.


Assuntos
Infertilidade Masculina , Motilidade dos Espermatozoides , Masculino , Animais , Camundongos , Humanos , Motilidade dos Espermatozoides/genética , Sêmen , Infertilidade Masculina/genética , Cabeça do Espermatozoide , Espermatozoides
5.
Hum Genet ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252283

RESUMO

Preimplantation embryonic arrest is an important pathogenesis of female infertility, but little is known about the genetic factors behind this phenotype. MEI4 is an essential protein for DNA double-strand break formation during meiosis, and Mei4 knock-out female mice are viable but sterile, indicating that MEI4 plays a crucial role in reproduction. To date, MEI4 has not been found to be associated with any human reproductive diseases. Here, we identified six compound heterozygous and homozygous MEI4 variants-namely, c.293C > T, p.(Ser98Leu), c.401C > G, p.(Pro134Arg), c.391C > G, p.(Pro131Ala), c.914A > T, p.(Tyr305Phe), c.908C > G, p.(Ala303Gly), and c.899A > T, p.(Gln300Leu)-in four independent families that were responsible for female infertility mainly characterized by preimplantation embryonic arrest. In vitro, we found that these variants reduced the interaction between MEI4 and DNA. In vivo, we generated a knock-in mouse model and demonstrated that female mice were infertile and were characterized by developmental defects during oogenesis. Our findings reveal the important roles of MEI4 in human reproduction and provide a new diagnostic marker for genetic counseling of clinical infertility patients.

6.
PLoS Biol ; 19(2): e3001043, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529186

RESUMO

MicroRNAs (miRNAs) play important roles in regulating flowering and reproduction of angiosperms. Mature miRNAs are encoded by multiple MIRNA genes that can differ in their spatiotemporal activities and their contributions to gene regulatory networks, but the functions of individual MIRNA genes are poorly defined. We functionally analyzed the activity of all 5 Arabidopsis thaliana MIR172 genes, which encode miR172 and promote the floral transition by inhibiting the accumulation of APETALA2 (AP2) and APETALA2-LIKE (AP2-LIKE) transcription factors (TFs). Through genome editing and detailed confocal microscopy, we show that the activity of miR172 at the shoot apex is encoded by 3 MIR172 genes, is critical for floral transition of the shoot meristem under noninductive photoperiods, and reduces accumulation of AP2 and TARGET OF EAT2 (TOE2), an AP2-LIKE TF, at the shoot meristem. Utilizing the genetic resources generated here, we show that the promotion of flowering by miR172 is enhanced by the MADS-domain TF FRUITFULL, which may facilitate long-term silencing of AP2-LIKE transcription, and that their activities are partially coordinated by the TF SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN 15. Thus, we present a genetic framework for the depletion of AP2 and AP2-LIKE TFs at the shoot apex during floral transition and demonstrate that this plays a central role in floral induction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , Proteínas de Arabidopsis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Meristema/genética , Fotoperíodo , Fatores de Transcrição
7.
Bioessays ; 44(12): e2200135, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36207289

RESUMO

Meiotic defects cause abnormal chromosome segregation leading to aneuploidy in mammalian oocytes. Chromosome segregation is particularly error-prone in human oocytes, but the mechanisms behind such errors remain unclear. To explain the frequent chromosome segregation errors, recent investigations have identified multiple meiotic defects and explained how these defects occur in female meiosis. In particular, we review the causes of cohesin exhaustion, leaky spindle assembly checkpoint (SAC), inherently unstable meiotic spindle, fragmented kinetochores or centromeres, abnormal aurora kinases (AURK), and clinical genetic variants in human oocytes. We mainly focus on meiotic defects in human oocytes, but also refer to the potential defects of female meiosis in mouse models.


Assuntos
Cinetocoros , Oócitos , Camundongos , Animais , Humanos , Feminino , Fuso Acromático , Meiose , Segregação de Cromossomos , Aneuploidia , Microtúbulos , Mamíferos
8.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593903

RESUMO

Inflorescence architecture dictates the number of flowers and, ultimately, seeds. The architectural discrepancies between two related cereals, barley and wheat, are controlled by differences in determinacy of inflorescence and spikelet meristems. Here, we characterize two allelic series of mutations named intermedium-m (int-m) and double seed1 (dub1) that convert barley indeterminate inflorescences into wheat-like determinate inflorescences bearing a multifloreted terminal spikelet and spikelets with additional florets. INT-M/DUB1 encodes an APETALA2-like transcription factor (HvAP2L-H5) that suppresses ectopic and precocious spikelet initiation signals and maintains meristem activity. HvAP2L-H5 inhibits the identity shift of an inflorescence meristem (IM) to a terminal spikelet meristem (TSM) in barley. Null mutations in AP2L-5 lead to fewer spikelets per inflorescence but extra florets per spikelet. In wheat, prolonged and elevated AP2L-A5 activity in rAP2L-A5 mutants delays but does not suppress the IM-TSM transition. We hypothesize that the regulation of AP2L-5 orthologs and downstream genes contributes to the different inflorescence determinacy in barley and wheat. We show that AP2L-5 proteins are evolutionarily conserved in grasses, promote IM activity, and restrict floret number per spikelet. This study provides insights into the regulation of spikelet and floret number, and hence grain yield in barley and wheat.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum/crescimento & desenvolvimento , Inflorescência/crescimento & desenvolvimento , Mutação , Proteínas de Plantas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Inflorescência/genética , Inflorescência/metabolismo , Proteínas de Plantas/genética
9.
J Assist Reprod Genet ; 41(5): 1233-1243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38536595

RESUMO

AIM: Abnormalities in oocyte maturation, fertilization, and early embryonic development are major causes of primary infertility in women who are undergoing IVF/ICSI attempts. Although many genetic factors responsible for these abnormal phenotypes have been identified, there are more additional pathogenic genes and variants yet to be discovered. Previous studies confirmed that bi-allelic PATL2 deficiency is an important factor for female infertility. In this study, 935 infertile patients with IVF/ICSI failure were selected for whole-exome sequencing, and 18 probands carrying PATL2 variants with a recessive inheritance pattern were identified. METHODS: We estimated that the prevalence contributed by PATL2 was 1.93% (18/935) in our study cohort. RESULTS: 15 novel variants were found in those families, including c.1093C > T, c.1609dupA, c.1204C > T, c.643dupG, c.877-2A > G, c.1228C > G, c.925G > A, c.958G > A, c.4A > G, c.1258T > C, c.1337G > A, c.1264dupA, c.88G > T, c.1065-2A > G, and c.1271T > C. The amino acids altered by the corresponding variants were highly conserved in mammals, and in silico analysis and 3D molecular modeling suggested that the PATL2 mutants impaired the physiologic function of the resulting proteins. Diverse clinical phenotypes, including oocyte maturation defect, fertilization failure, and early embryonic arrest might result from different variants of PATL2. CONCLUSIONS: These results expand the spectrum of PATL2 variants and provide an important reference for genetic counseling for female infertility, and they increase our understanding of the mechanisms of oocyte maturation arrest caused by PATL2 deficiency.


Assuntos
Sequenciamento do Exoma , Fertilização in vitro , Infertilidade Feminina , Mutação , Fenótipo , Injeções de Esperma Intracitoplásmicas , Humanos , Feminino , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , Adulto , Mutação/genética , Oócitos/crescimento & desenvolvimento , Oócitos/patologia , Gravidez , Linhagem
10.
BMC Surg ; 24(1): 178, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849774

RESUMO

OBJECTIVE: This study aimed to examine the correlation between preoperative body mass index (BMI) and adequate percentage of total weight loss (TWL%) outcome and present evidence of tiered treatment for patients with obesity in different preoperative BMI. METHODS: We included patients with complete follow-up data who underwent metabolic and bariatric surgery (BMS). We termed optimal clinical response as TWL% >20% at one year following MBS. To investigate dose-response association between preoperative BMI and optimal clinical response, preoperative BMI was analyzed in three ways: (1) as quartiles; (2) per 2.5 kg/m2 units (3) using RCS, with 3 knots as recommended. RESULTS: A total of 291 patients with obesity were included in our study. The corresponding quartile odds ratios associated with optimal clinical response and adjusted for potential confounders were 1.00 (reference), 1.434 [95% confidence interval (95%CI)   =  0.589-3.495], 4.926 (95%CI   =  1.538-15.772), and 2.084 (95%CI   =  0.941-1.005), respectively. RCS analysis showed a non-linear inverted U-shaped association between preoperative BMI and optimal clinical response (Nonlinear P   =  0.009). In spline analysis, when preoperative BMI was no less than 42.9 kg/m2, the possibility of optimal clinical response raised as preoperative BMI increased. When preoperative BMI was greater than 42.9 kg/m2, the possibility of optimal clinical response had a tendency to decline as preoperative BMI increased. CONCLUSION: Our research indicated the non-linear inverted U-shaped correlation between preoperative BMI and adequate weight loss. Setting a preoperative BMI threshold of 42.9 is critical to predicting optimal clinical outcomes.


Assuntos
Cirurgia Bariátrica , Índice de Massa Corporal , Redução de Peso , Humanos , Cirurgia Bariátrica/métodos , Estudos Retrospectivos , Feminino , Masculino , Redução de Peso/fisiologia , Pessoa de Meia-Idade , Adulto , Resultado do Tratamento , Obesidade/complicações , Obesidade/cirurgia , Obesidade Mórbida/cirurgia , Obesidade Mórbida/complicações
11.
J Am Chem Soc ; 145(8): 4570-4582, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802544

RESUMO

Interactions of plasmonic nanocolloids such as gold nanoparticles and nanorods with proximal dye emitters result in efficient quenching of the dye photoluminescence (PL). This has become a popular strategy for developing analytical biosensors relying on this quenching process for signal transduction. Here, we report on the use of stable PEGylated gold nanoparticles, covalently coupled to dye-labeled peptides, as sensitive optically addressable sensors for determining the catalytic efficiency of the human matrix metalloproteinase-14 (MMP-14), a cancer biomarker. We exploit real-time dye PL recovery triggered by MMP-14 hydrolysis of the AuNP-peptide-dye to extract quantitative analysis of the proteolysis kinetics. Sub-nanomolar limit of detections for MMP-14 has been achieved using our hybrid bioconjugates. In addition, we have used theoretical considerations within a diffusion-collision framework to derive enzyme substrate hydrolysis and inhibition kinetics equations, which allowed us to describe the complexity and irregularity of enzymatic proteolysis of nanosurface-immobilized peptide substrates. Our findings offer a great strategy for the development of highly sensitive and stable biosensors for cancer detection and imaging.


Assuntos
Metaloproteinase 14 da Matriz , Nanopartículas Metálicas , Humanos , Ouro , Peptídeos , Hidrólise
12.
Hum Genet ; 142(6): 735-748, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36995441

RESUMO

Asthenozoospermia is one of the main factors leading to male infertility, but the genetic mechanisms have not been fully elucidated. Variants in the androglobin (ADGB) gene were identified in an infertile male characterized by asthenozoospermia. The variants disrupted the binding of ADGB to calmodulin. Adgb-/- male mice were infertile due to reduced sperm concentration (< 1 × 106 /mL) and motility. Spermatogenesis was also abnormal, with malformation of both elongating and elongated spermatids, and there was an approximately twofold increase in apoptotic cells in the cauda epididymis. These exacerbated the decline in sperm motility. It is surprising that ICSI with testicular spermatids allows fertilization and eventually develops into blastocyst. Through mass spectrometry, we identified 42 candidate proteins that are involved in sperm assembly, flagella formation, and sperm motility interacting with ADGB. In particular, CFAP69 and SPEF2 were confirmed to bind to ADGB. Collectively, our study suggests the potential important role of ADGB in human fertility, revealing its relevance to spermatogenesis and infertility. This expands our knowledge of the genetic causes of asthenozoospermia and provides a theoretical basis for using ADGB as an underlying genetic marker for infertile males.


Assuntos
Astenozoospermia , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Astenozoospermia/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo
13.
Hum Genet ; 142(11): 1621-1631, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37768355

RESUMO

Oocyte maturation defects are major phenotypes resulting in female infertility. Although many genetic factors have been found to be responsible for these phenotypes, the underlying pathogenic genes and variants remain to be identified. The anaphase promoting complex or cyclosome (APC/C) is known to be essential in the metaphase-to-anaphase transition. In this study, we identified two homozygous missense variants (c.986A > G, p.Y329C and c.988C > T, p.R330C) in CDC23 that are responsible for female infertility characterized by oocyte maturation defects in three infertile individuals. CDC23 (cell division cycle 23) is one of the core subunits of the APC/C. In vitro experiments showed that the variant c.986A > G (p.Y329C) led to a decrease in CDC23 protein level and the variant c.988C > T (p.R330C) changed the localization of CDC23 in HeLa cells and mouse oocytes. In vivo studies showed that Cdc23Y329C/Y329C mice successfully mimicked the patients' phenotype by causing low expression of CDC23 and APC4 and the accumulation of securin and cyclin B1 in oocytes. AZ3146 treatment was able to rescue the phenotype. Taken together, our findings reveal the important roles of CDC23 in human oocyte maturation and provide a new genetic marker for female infertility.


Assuntos
Proteínas de Ciclo Celular , Infertilidade Feminina , Humanos , Feminino , Animais , Camundongos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Infertilidade Feminina/genética , Ciclossomo-Complexo Promotor de Anáfase , Oócitos
14.
Am J Hum Genet ; 107(1): 24-33, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32502391

RESUMO

Zygotic cleavage failure (ZCF) is a unique early embryonic phenotype resulting in female infertility and recurrent failure of in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI). With this phenotype, morphologically normal oocytes can be retrieved and successfully fertilized, but they fail to undergo cleavage. Until now, whether this phenotype has a Mendelian inheritance pattern and which underlying genetic factors play a role in its development remained to be elucidated. B cell translocation gene 4 (BTG4) is a key adaptor of the CCR4-NOT deadenylase complex, which is involved in maternal mRNA decay in mice, but no human diseases caused by mutations in BTG4 have previously been reported. Here, we identified four homozygous mutations in BTG4 (GenBank: NM_017589.4) that are responsible for the phenotype of ZCF, and we found they followed a recessive inheritance pattern. Three of them-c.73C>T (p.Gln25Ter), c.1A>G (p.?), and c.475_478del (p.Ile159LeufsTer15)-resulted in complete loss of full-length BTG4 protein. For c.166G>A (p.Ala56Thr), although the protein level and distribution of mutant BTG4 was not altered in zygotes from affected individuals or in HeLa cells, the interaction between BTG4 and CNOT7 was abolished. In vivo studies further demonstrated that the process of maternal mRNA decay was disrupted in the zygotes of the affected individuals, which provides a mechanistic explanation for the phenotype of ZCF. Thus, we provide evidence that ZCF is a Mendelian phenotype resulting from mutations in BTG4. These findings contribute to our understanding of the role of BTG4 in human early embryonic development and provide a genetic marker for female infertility.


Assuntos
Proteínas de Ciclo Celular/genética , Infertilidade Feminina/genética , Mutação/genética , Zigoto/patologia , Animais , Linhagem Celular Tumoral , Desenvolvimento Embrionário/genética , Exorribonucleases/genética , Feminino , Células HeLa , Homozigoto , Humanos , Infertilidade Feminina/patologia , Camundongos , Fenótipo , Estabilidade de RNA/genética
15.
Am J Hum Genet ; 107(1): 15-23, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32473092

RESUMO

Normal oocyte meiosis is a prerequisite for successful human reproduction, and abnormalities in the process will result in infertility. In 2016, we identified mutations in TUBB8 as responsible for human oocyte meiotic arrest. However, the underlying genetic factors for most affected individuals remain unknown. TRIP13, encoding an AAA-ATPase, is a key component of the spindle assembly checkpoint, and recurrent homozygous nonsense variants and a splicing variant in TRIP13 are reported to cause Wilms tumors in children. In this study, we identified homozygous and compound heterozygous missense pathogenic variants in TRIP13 responsible for female infertility mainly characterized by oocyte meiotic arrest in five individuals from four independent families. Individuals from three families suffered from oocyte maturation arrest, whereas the individual from the fourth family had abnormal zygote cleavage. All displayed only the infertility phenotype without Wilms tumors or any other abnormalities. In vitro and in vivo studies showed that the identified variants reduced the protein abundance of TRIP13 and caused its downstream molecule, HORMAD2, to accumulate in HeLa cells and in proband-derived lymphoblastoid cells. The chromosome mis-segregation assay showed that variants did not have any effects on mitosis. Injecting TRIP13 cRNA into oocytes from one affected individual was able to rescue the phenotype, which has implications for future therapeutic treatments. This study reports pathogenic variants in TRIP13 responsible for oocyte meiotic arrest, and it highlights the pivotal but different roles of TRIP13 in meiosis and mitosis. These findings also indicate that different dosage effects of mutant TRIP13 might result in two distinct human diseases.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Ciclo Celular/genética , Infertilidade Feminina/genética , Mutação de Sentido Incorreto/genética , Oócitos/patologia , Adulto , Alelos , Linhagem Celular Tumoral , Feminino , Células HeLa , Homozigoto , Humanos , Meiose/genética , Fenótipo , Zigoto/patologia
16.
Anal Chem ; 95(5): 2713-2722, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36705737

RESUMO

We detail the assembly and characterization of quantum dot (QD)-dye conjugates constructed using a peptide bridge specifically designed to recognize and interact with a breast cancer biomarker─matrix metalloproteinase-14 (MMP-14). The assembled QD conjugates are then used as optically addressable probes, relying on Förster resonance energy transfer (FRET) interactions as a transduction mechanism to detect the activity of MMP-14 in solution phase. The QDs were first coated with dithiolane poly(ethylene glycol) (PEG) bearing a carboxyl group that allows coupling via amide bond formation with different dye-labeled peptides. The analytical capability of the conjugates is enabled by correlating changes in the FRET efficiency with the conjugate valence and/or QD-to-dye separation distance, triggered and modulated by enzymatic proteolysis of surface-tethered peptides. The FRET probe exhibits great sensitivity to enzyme digestion with sub-nanomolar limit of detection. We further analyze the proteolysis data within the framework of the Michaelis-Menten model, which considers the fact that surface-attached peptides have a slower diffusion coefficient than free peptides. This results in reduced collision frequency and lower catalytic efficiency, kcat/KM. Our results suggest that our conjugate design is promising, effective, and potentially useful for in vivo analysis.


Assuntos
Pontos Quânticos , Pontos Quânticos/química , Proteólise , Metaloproteinase 14 da Matriz , Peptídeos/química , Transferência Ressonante de Energia de Fluorescência/métodos
17.
Clin Genet ; 104(4): 461-465, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37211617

RESUMO

Normal oocyte maturation is an important requirement for the success of human reproduction, and defects in this process will lead to female infertility and repeated IVF/ICSI failures. In order to identify genetic factors that are responsible for oocyte maturation defect, we used whole exome sequencing in the affected individual with oocyte maturation defect from a consanguineous family and identified a homozygous variant c.853_861del (p.285_287del) in ZFP36L2. ZFP36L2 is a RNA-binding protein, which regulates maternal mRNA decay and oocyte maturation. In vitro studies showed that the variant caused decreased protein levels of ZFP36L2 in oocytes due to mRNA instability and might lead to the loss of its function to degrade maternal mRNAs. Previous study showed that the pathogenic variants in ZFP36L2 were associated with early embryonic arrest. In contrast, we identified a novel ZFP36L2 variant in the affected individual with oocyte maturation defect, which further broadened the mutational and phenotypic spectrum of ZFP36L2, suggesting that ZFP36L2 might be a genetic diagnostic marker for the affected individuals with oocyte maturation defect.


Assuntos
Infertilidade Feminina , Feminino , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , Oócitos/metabolismo , Oogênese/genética , Mutação , Homozigoto , Fatores de Transcrição/genética
18.
Clin Genet ; 103(3): 352-357, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36373164

RESUMO

Ovarian dysfunction, including premature ovarian insufficiency and decreased ovarian reserve, affects the ovarian reserve and is one of the leading causes of female infertility. More and more cases of ovarian dysfunction are associated with genetic factors. Here, we identified eight potential variants in five genes (MSH4, HFM1, SYCE1, FSHR, and C14orf39) from six independent families by exome sequencing. The splice-site variants in SYCE1 and MSH4 affected canonical splicing isoforms, leading to missing protein domains or premature termination. Our findings expand the mutational spectrum of ovarian dysfunction and provide potential biomarkers for future genetic counseling and for more personalized treatments. Exome sequencing was shown to be a useful tool to better dissect the genetic basis for ovarian dysfunction and yielded a genetic diagnosis in about 5.0% (6/124) of cases in a cohort of 124 patients with ovarian dysfunction.


Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Humanos , Feminino , Insuficiência Ovariana Primária/diagnóstico , Insuficiência Ovariana Primária/genética , Menopausa Precoce/genética , Mutação , Testes Genéticos
19.
Hum Reprod ; 38(1): 168-179, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36355624

RESUMO

STUDY QUESTION: Can new genetic factors responsible for male infertility be identified, especially for those characterized by asthenospermia despite normal sperm morphology? SUMMARY ANSWER: We identified the novel pathogenetic gene IQ motif and ubiquitin-like domain-containing (IQUB) as responsible for male infertility characterized by asthenospermia, involving sperm radial spoke defects. WHAT IS KNOWN ALREADY: To date, only a few genes have been found to be responsible for asthenospermia with normal sperm morphology. Iqub, encoding the IQUB protein, is highly and specifically expressed in murine testes and interacts with the proteins radial spoke head 3 (RSPH3), CEP295 N-terminal like (CEP295NL or DDC8), glutathione S-transferase mu 1 (GSTM1) and outer dense fiber of sperm tails 1 (ODF1) in the yeast two-hybrid system. STUDY DESIGN, SIZE, DURATION: The IQUB variant was identified by whole-exome sequencing in a cohort of 126 male infertility patients with typical asthenospermia recruited between 2015 and 2020. Knockout (KO) and knockin (KI) mouse models, scanning and transmission electron microscopy (TEM), and other functional assays were performed, between 2019 and 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS: The IQUB variant was identified by whole-exome sequencing and confirmed by Sanger sequencing. Iqub KO and KI mice were constructed to mimic the phenotype of the affected individual. After recapitulating the phenotype of human male infertility, scanning and TEM were performed to check the ultrastructure of the sperm. Western blot and co-immunoprecipitation were performed to clarify the pathological mechanism of the IQUB variant. MAIN RESULTS AND THE ROLE OF CHANCE: We identified a homozygous nonsense IQUB variant (NM_001282855.2:c.942T> G(p.Tyr314*)) from an infertile male. Iqub KO and KI mice mimicked the infertility phenotype and confirmed IQUB to be the pathogenetic gene. Scanning and TEM showed that sperm of both the mouse models and the affected individual had radial spoke defects. The functional assay suggested that IQUB may recruit calmodulin in lower Ca2+ environments to facilitate the normal assembly of radial spokes by inhibiting the activity of RSPH3/p-ERK1/2 (a nontypical AKAP (A-Kinase Anchoring Protein) forming by RSPH3 and phosphorylation of extracellular signal-regulated kinase 1 and 2 (p-ERK1/2)). LIMITATIONS, REASONS FOR CAUTION: Additional cases are needed to confirm the genetic contribution of IQUB variants to male infertility. In addition, because no IQUB antibody is available for immunofluorescence and the polyclonal antibody we generated was only effective in western blotting, immunostaining for IQUB was not performed in this study. Therefore, this study lacks direct in vivo proof to confirm the effect of the variant on IQUB protein level. WIDER IMPLICATIONS OF THE FINDINGS: Our results suggest a causal relation between IQUB variants and male infertility owing to asthenospermia, and partly clarify the pathological mechanism of IQUB variants. This expands our knowledge of the genes involved in human sperm asthenospermia and potentially provides a new genetic marker for male infertility. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Key Research and Development Program of China (2021YFC2700100), the National Natural Science Foundation of China (32130029, 82171643, 81971450, 82001538, and 81971382) and the Guangdong Science and Technology Department Guangdong-Hong Kong-Macao Joint Innovation Project (2020A0505140003). There are no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Astenozoospermia , Infertilidade Masculina , Humanos , Masculino , Animais , Camundongos , Fosforilação , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Sêmen/metabolismo , Camundongos Knockout , Infertilidade Masculina/patologia , Espermatozoides/metabolismo , Astenozoospermia/metabolismo
20.
Plant Cell ; 32(5): 1479-1500, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32132131

RESUMO

Several pathways conferring environmental flowering responses in Arabidopsis (Arabidopsis thaliana) converge on developmental processes that mediate the floral transition in the shoot apical meristem. Many characterized mutations disrupt these environmental responses, but downstream developmental processes have been more refractory to mutagenesis. Here, we constructed a quintuple mutant impaired in several environmental pathways and showed that it possesses severely reduced flowering responses to changes in photoperiod and ambient temperature. RNA-sequencing (RNA-seq) analysis of the quintuple mutant showed that the expression of genes encoding gibberellin biosynthesis enzymes and transcription factors involved in the age pathway correlates with flowering. Mutagenesis of the quintuple mutant generated two late-flowering mutants, quintuple ems1 (qem1) and qem2 The mutated genes were identified by isogenic mapping and transgenic complementation. The qem1 mutant is an allele of the gibberellin 20-oxidase gene ga20ox2, confirming the importance of gibberellin for flowering in the absence of environmental responses. By contrast, qem2 is impaired in CHROMATIN REMODELING4 (CHR4), which has not been genetically implicated in floral induction. Using co-immunoprecipitation, RNA-seq, and chromatin immunoprecipitation sequencing, we show that CHR4 interacts with transcription factors involved in floral meristem identity and affects the expression of key floral regulators. Therefore, CHR4 mediates the response to endogenous flowering pathways in the inflorescence meristem to promote floral identity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Meio Ambiente , Flores/genética , Flores/fisiologia , Mutagênese/genética , Mutação/genética , Proteínas de Arabidopsis/genética , DNA Helicases , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Genoma de Planta , Histonas/metabolismo , Meristema/genética , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA