Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 293(44): 17267-17277, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30237175

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen that causes nosocomial infections. The P. aeruginosa outer membrane contains specific porins that enable substrate uptake, with the outer membrane protein OprG facilitating transport of small, uncharged amino acids. However, the pore size of an eight-stranded ß-barrel monomer of OprG is too narrow to accommodate even the smallest transported amino acid, glycine, raising the question of how OprG facilitates amino acid uptake. Pro-92 of OprG is critically important for amino acid transport, with a P92A substitution inhibiting transport and the NMR structure of this variant revealing that this substitution produces structural changes in the barrel rim and restricts loop motions. OprG may assemble into oligomers in the outer membrane (OM) whose subunit interfaces could form a transport channel. Here, we explored the contributions of the oligomeric state and the extracellular loops to OprG's function. Using chemical cross-linking to determine the oligomeric structures of both WT and P92A OprG in native outer membranes and atomic force microscopy, and single-molecule fluorescence of the purified proteins reconstituted into lipid bilayers, we found that both protein variants form oligomers, supporting the notion that subunit interfaces in the oligomer could provide a pathway for amino acid transport. Furthermore, performing transport assays with loop-deleted OprG variants, we found that these variants also can transport small amino acids, indicating that the loops are not solely responsible for substrate transport. We propose that OprG functions as an oligomer and that conformational changes in the barrel-loop region might be crucial for its activity.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Substituição de Aminoácidos , Aminoácidos/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Conformação Proteica , Pseudomonas aeruginosa/genética
2.
Proc Natl Acad Sci U S A ; 110(29): 11815-20, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818593

RESUMO

We have established a reconstitution system for the translocon SecYEG in proteoliposomes in which 55% of the accessible translocons are active. This level corresponds to the fraction of translocons that are active in vitro when assessed in their native environment of cytoplasmic membrane vesicles. Assays using these robust reconstituted proteoliposomes and cytoplasmic membrane vesicles have revealed that the number of SecYEG units involved in an active translocase depends on the precursor undergoing transfer. The active translocase for the precursor of periplasmic galactose-binding protein contains twice the number of heterotrimeric units of SecYEG as does that for the precursor of outer membrane protein A.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , Proteínas de Membrana/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Radioisótopos de Carbono/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Microscopia de Força Atômica , Proteolipídeos/metabolismo , Canais de Translocação SEC , Radioisótopos de Enxofre/metabolismo , Vesículas Transportadoras/metabolismo
3.
J Biol Chem ; 288(23): 16848-16854, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23609442

RESUMO

Purified SecYEG was reconstituted into liposomes and studied in near-native conditions using atomic force microscopy. These SecYEG proteoliposomes were active in translocation assays. Changes in the structure of SecYEG as a function of time were directly visualized. The dynamics observed were significant in magnitude (∼1-10 Å) and were attributed to the two large loops of SecY linking transmembrane helices 6-7 and 8-9. In addition, we identified a distribution between monomers and dimers of SecYEG as well as a smaller population of higher order oligomers. This work provides a new vista of the flexible and dynamic structure of SecYEG, an intricate and vital membrane protein.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Membrana/química , Complexos Multiproteicos/química , Transporte Biológico Ativo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Força Atômica , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Estrutura Quaternária de Proteína , Canais de Translocação SEC
4.
Nat Commun ; 12(1): 4363, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272395

RESUMO

Conformational changes in ion channels lead to gating of an ion-conductive pore. Ion flux has been measured with high temporal resolution by single-channel electrophysiology for decades. However, correlation between functional and conformational dynamics remained difficult, lacking experimental techniques to monitor sub-millisecond conformational changes. Here, we use the outer membrane protein G (OmpG) as a model system where loop-6 opens and closes the ß-barrel pore like a lid in a pH-dependent manner. Functionally, single-channel electrophysiology shows that while closed states are favored at acidic pH and open states are favored at physiological pH, both states coexist and rapidly interchange in all conditions. Using HS-AFM height spectroscopy (HS-AFM-HS), we monitor sub-millisecond loop-6 conformational dynamics, and compare them to the functional dynamics from single-channel recordings, while MD simulations provide atomistic details and energy landscapes of the pH-dependent loop-6 fluctuations. HS-AFM-HS offers new opportunities to analyze conformational dynamics at timescales of domain and loop fluctuations.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Eletrofisiologia/métodos , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Porinas/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Porinas/genética , Porinas/metabolismo , Conformação Proteica , Conformação Proteica em Folha beta , Proteínas Recombinantes , Análise Espectral , Relação Estrutura-Atividade
5.
ACS Sens ; 4(5): 1230-1235, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30990011

RESUMO

Interest in nanopore technology has been growing due to nanopores' unique capabilities in small molecule sensing, measurement of protein folding, and low-cost DNA and RNA sequencing. The E. coli ß-barrel outer membrane protein OmpG is an excellent alternative to other protein nanopores because of its single polypeptide chain. However, the flexibility of its extracellular loops ultimately limits applications in traditional biosensing. We deleted several residues in and near loop 6 of OmpG. The dynamic structure of the new construct determined by NMR shows that loops 1, 2, 6, and 7 have reduced flexibilities compared to those of wild-type. Electrophysiological measurements show that the new design virtually eliminates flickering between open and closed states across a wide pH range. Modification of the pore lumen with a copper chelating moiety facilitates detection of small molecules. As proof of concept, we demonstrate concurrent single-molecule biosensing of glutamate and adenosine triphosphate.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Técnicas Biossensoriais/métodos , Proteínas de Escherichia coli/química , Nanoporos , Porinas/química , Trifosfato de Adenosina/análise , Ácido Glutâmico/análise , Modelos Moleculares , Conformação Proteica em Folha beta
6.
Sci Adv ; 5(6): eaav9404, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31206019

RESUMO

Escherichia coli exports proteins via a translocase comprising SecA and the translocon, SecYEG. Structural changes of active translocases underlie general secretory system function, yet directly visualizing dynamics has been challenging. We imaged active translocases in lipid bilayers as a function of precursor protein species, nucleotide species, and stage of translocation using atomic force microscopy (AFM). Starting from nearly identical initial states, SecA more readily dissociated from SecYEG when engaged with the precursor of outer membrane protein A as compared to the precursor of galactose-binding protein. For the SecA that remained bound to the translocon, the quaternary structure varied with nucleotide, populating SecA2 primarily with adenosine diphosphate (ADP) and adenosine triphosphate, and the SecA monomer with the transition state analog ADP-AlF3. Conformations of translocases exhibited precursor-dependent differences on the AFM imaging time scale. The data, acquired under near-native conditions, suggest that the translocation process varies with precursor species.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Ligação ao Cálcio/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Bicamadas Lipídicas/química , Proteínas de Transporte de Monossacarídeos/química , Proteínas Periplásmicas de Ligação/química , Precursores de Proteínas/química , Proteínas SecA/química , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Bicamadas Lipídicas/metabolismo , Microscopia de Força Atômica , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Ligação Proteica , Multimerização Proteica , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estrutura Quaternária de Proteína , Transporte Proteico , Proteolipídeos/química , Proteolipídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canais de Translocação SEC/química , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Proteínas SecA/genética , Proteínas SecA/metabolismo
7.
Sci Rep ; 8(1): 978, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343783

RESUMO

Imaging by atomic force microscopy (AFM) offers high-resolution descriptions of many biological systems; however, regardless of resolution, conclusions drawn from AFM images are only as robust as the analysis leading to those conclusions. Vital to the analysis of biomolecules in AFM imagery is the initial detection of individual particles from large-scale images. Threshold and watershed algorithms are conventional for automatic particle detection but demand manual image preprocessing and produce particle boundaries which deform as a function of user-defined parameters, producing imprecise results subject to bias. Here, we introduce the Hessian blob to address these shortcomings. Combining a scale-space framework with measures of local image curvature, the Hessian blob formally defines particle centers and their boundaries, both to subpixel precision. Resulting particle boundaries are independent of user defined parameters, with no image preprocessing required. We demonstrate through direct comparison that the Hessian blob algorithm more accurately detects biomolecules than conventional AFM particle detection techniques. Furthermore, the algorithm proves largely insensitive to common imaging artifacts and noise, delivering a stable framework for particle analysis in AFM.

8.
Structure ; 23(2): 257-69, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25651059

RESUMO

Skeletal development and invasion by tumor cells depends on proteolysis of collagen by the pericellular metalloproteinase MT1-MMP. Its hemopexin-like (HPX) domain binds to collagen substrates to facilitate their digestion. Spin labeling and paramagnetic nuclear magnetic resonance (NMR) detection have revealed how the HPX domain docks to collagen I-derived triple helix. Mutations impairing triple-helical peptidase activity corroborate the interface. Saturation transfer difference NMR suggests rotational averaging around the longitudinal axis of the triple-helical peptide. Part of the interface emerges as unique and potentially targetable for selective inhibition. The triple helix crosses the junction of blades I and II at a 45° angle to the symmetry axis of the HPX domain, placing the scissile Gly∼Ile bond near the HPX domain and shifted ∼25 Å from MMP-1 complexes. This raises the question of the MT1-MMP catalytic domain folding over the triple helix during catalysis, a possibility accommodated by the flexibility between domains suggested by atomic force microscopy images.


Assuntos
Colágeno/química , Colágeno/metabolismo , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/metabolismo , Modelos Moleculares , Invasividade Neoplásica/fisiopatologia , Sequência de Aminoácidos , Cristalografia , Humanos , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Proteólise , Marcadores de Spin
9.
ACS Chem Biol ; 9(4): 957-66, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24495220

RESUMO

Activation by glycosaminoglycans (GAGs) is an emerging trend among extracellular proteases important in disease. ProMMP-7, the zymogen of a matrix metalloproteinase secreted by mucosal epithelial and tumor cells, is activated at their surfaces by sulfated GAGs, but how? ProMMP-7 is activated in trans by representative heparin oligosaccharides in a length-dependent manner, with a large jump in activation at lengths of 16 monosaccharides. Imaging by atomic force microscopy visualized small complexes of proMMP-7 molecules linked by 8-mer lengths of heparinoids and extended assembles formed with 16-mer lengths of heparin. Complexes of proMMP-7 with polydisperse heparin or heparan sulfate were more diverse. Heparinoids evidently accelerate activation by tethering multiple proMMP-7 molecules together for proteolytic attack among neighbors. Removal of either the prodomain or C-terminal peptide sequence of KRSNSRKK from MMP-7 prevents formation of the long arrays induced by heparin 16-mers or heparan sulfate. The role of the C-terminus in activation assays suggests it contributes to remote, allosteric binding of GAGs. Enhancement of proteolytic velocity of MMP-by GAGs indicates them to be effectors of V-type allostery. GAGs from proteoglycans appear to assemble proMMP-7 molecules for activation, an event preceding its tumorigenic or antibacterial proteolytic activities at cell surfaces.


Assuntos
Heparinoides/farmacologia , Modelos Biológicos , Mucosa/metabolismo , Neoplasias/metabolismo , Peptídeo Hidrolases/metabolismo , Regulação Alostérica , Animais , Ativação Enzimática , Humanos , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Microscopia de Força Atômica , Peptídeo Hidrolases/efeitos dos fármacos , Ligação Proteica , Ratos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA