Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 17, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200553

RESUMO

BACKGROUND: Yeast treatment has been used for purification of fructooligosaccharides (FOSs). However, the main drawback of this approach is that yeast can only partially remove sucrose from crude FOSs. The main objective of this research was to screen yeast strains for the capability of selectively consuming unwanted sugars, namely fructose, glucose, and sucrose, in crude FOSs extracted from red onion (Allium cepa var. viviparum) with minimal effect on FOS content. RESULTS: Among 43 yeast species isolated from Miang, ethnic fermented tea leaves, and Assam tea flowers, Candida orthopsilosis FLA44.2 and Priceomyces melissophilus FLA44.8 exhibited the greatest potential to specifically consume these unwanted sugars. In a shake flask, direct cultivation of C. orthopsilosis FLA44.2 was achieved in the original crude FOSs containing an initial FOSs concentration of 88.3 ± 1.2 g/L and 52.9 ± 1.2 g/L of the total contents of fructose, glucose, and sucrose. This was successful with 93.7% purity and 97.8% recovery after 24 h of cultivation. On the other hand, P. melissophilus FLA48 was limited by initial carbohydrate concentration of crude FOSs in terms of growth and sugar utilization. However, it could directly purify two-fold diluted crude FOSs to 95.2% purity with 92.2% recovery after 72 h of cultivation. Purification of crude FOSs in 1-L fermenter gave similar results to the samples purified in a shake flask. Extracellular ß-fructosidase was assumed to play a key role in the effective removal of sucrose. Both Candida orthopsilosis FLA44.2 and P. melissophilus FLA44.8 showed γ-hemolytic activity, while their culture broth had no cytotoxic effect on viability of small intestinal epithelial cells, preliminarily indicating their safety for food processing. The culture broth obtained from yeast treatment was passed through an activated charcoal column for decolorization and deodorization. After being freeze dried, the final purified FOSs appeared as a white granular powder similar to refined sugar and was odorless since the main sulfur-containing volatile compounds, including dimethyl disulfide and dipropyl trisulfide, were almost completely removed. CONCLUSION: The present purification process is considered simple and straight forward, and provides new and beneficial insight into utilization of alternative yeast species for purification of FOSs.


Assuntos
Glucose , Oligossacarídeos , Cebolas , Sacarose , Candida parapsilosis , Frutose , Chá
2.
J Chem Inf Model ; 64(3): 874-891, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277124

RESUMO

The emergence of the COVID-19 situation has become a global issue due to the lack of effective antiviral drugs for treatment. Flavonoids are a class of plant secondary metabolites that have antiviral activity against SARS-CoV-2 through inhibition of the main protease (3CLpro). In this study, 22 flavonoids obtained from natural sources and semisynthetic approaches were investigated for their inhibitory activity against SARS-CoV-2 3CLpro, along with cytotoxicity on Vero cells. The protein-ligand interactions were examined using molecular dynamics simulation. Moreover, QSAR analysis was conducted to clarify the structural effects on bioactivity. Accordingly, the in vitro investigation demonstrated that four flavonoids, namely, tectochrysin (7), 6″,6″-dimethylchromeno-[2″,3″:7,8]-flavone (9), panduratin A (19), and genistein (20), showed higher protease inhibitory activity compared to the standard flavonoid baicalein. Finally, our finding suggests that genistein (20), an isoflavone discovered in Millettia brandisiana, has potential for further development as a SARS-CoV-2 3CLpro inhibitor.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Chlorocebus aethiops , SARS-CoV-2/metabolismo , Células Vero , Genisteína/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteínas não Estruturais Virais/química , Peptídeo Hidrolases , Antivirais/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular
3.
J Chem Inf Model ; 63(7): 2104-2121, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36647612

RESUMO

The emergence of SARS-CoV-2 in December 2019 has become a global issue due to the continuous upsurge in patients and the lack of drug efficacy for treatment. SARS-CoV-2 3CLPro is one of the most intriguing biomolecular targets among scientists worldwide for developing antiviral drugs due to its relevance in viral replication and transcription. Herein, we utilized computer-assisted drug screening to investigate 326 natural products from Thai traditional plants using structure-based virtual screening against SARS-CoV-2 3CLPro. Following the virtual screening, the top 15 compounds based on binding energy and their interactions with key amino acid Cys145 were obtained. Subsequently, they were further evaluated for protein-ligand complex stability via molecular dynamics simulation and binding free energy calculation using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches. Following drug-likeness and ADME/Tox assessments, seven bisbenzylisoquinolines were obtained, including neferine (3), liensinine (4), isoliensinine (5), dinklacorine (8), tiliacorinine (13), 2'-nortiliacorinine (14), and yanangcorinine (15). These compounds computationally showed a higher binding affinity than native N3 and GC-373 inhibitors and attained stable interactions on the active site of 3CLpro during 100 ns in molecular dynamics (MD) simulation. Moreover, the in vitro enzymatic assay showed that most bisbenzylisoquinolines could experimentally inhibit SARS-CoV-2 3CLPro. To our delight, isoliensinine (5) isolated from Nelumbo nucifera demonstrated the highest inhibition of protease activity with the IC50 value of 29.93 µM with low toxicity on Vero cells. Our findings suggested that bisbenzylisoquinoline scaffolds could be potentially used as an in vivo model for the development of effective anti-SARS-CoV-2 drugs.


Assuntos
Antivirais , Benzilisoquinolinas , SARS-CoV-2 , Animais , Humanos , Antivirais/farmacologia , Benzilisoquinolinas/farmacologia , Chlorocebus aethiops , COVID-19 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases , SARS-CoV-2/efeitos dos fármacos , Células Vero , Plantas Medicinais/química , Compostos Fitoquímicos/farmacologia
4.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208945

RESUMO

2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC), a natural product derived from Syzygium nervosum A. Cunn. ex DC., was investigated for its inhibitory activities against various cancer cell lines. In this work, we investigated the effects of DMC and available anticervical cancer drugs (5-fluorouracil, cisplatin, and doxorubicin) on three human cervical cancer cell lines (C-33A, HeLa, and SiHa). DMC displayed antiproliferative cervical cancer activity in C-33A, HeLa, and SiHa cells, with IC50 values of 15.76 ± 1.49, 10.05 ± 0.22, and 18.31 ± 3.10 µM, respectively. DMC presented higher antiproliferative cancer activity in HeLa cells; therefore, we further investigated DMC-induced apoptosis in this cell line, including DNA damage, cell cycle arrest, and apoptosis assays. As a potential anticancer agent, DMC treatment increased DNA damage in cancer cells, observed through fluorescence inverted microscopy and a comet assay. The cell cycle assay showed an increased number of cells in the G0/G1 phase following DMC treatment. Furthermore, DMC treatment-induced apoptosis cell death was approximately three- to four-fold higher compared to the untreated group. Here, DMC represented a compound-induced apoptosis for cell death in the HeLa cervical cancer cell line. Our findings suggest that DMC, a phytochemical agent, is a potential candidate for antiproliferative cervical cancer drug development.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Chalconas/farmacologia , Dano ao DNA , Sementes/química , Syzygium/química , Neoplasias do Colo do Útero , Animais , Antineoplásicos Fitogênicos/química , Chalconas/química , Feminino , Células HeLa , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo
5.
Analyst ; 146(7): 2203-2211, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33595007

RESUMO

In this work, we report, for the first time, the construction of a label-free electrochemical immunosensor for highly sensitive detection of a new lung cancer biomarker, GM2 activator protein (GM2AP). A polyethyleneimine-coated gold nanoparticle (PEI-AuNP) and phosphomolybdic acid (PMA) modified electrode is developed as a novel redox platform for GM2AP detection. A PEI-AuNP film-modified screen-printed carbon electrode, as a signal amplifier support, was successfully fabricated for the adsorption of PMA redox molecules and is used for signal amplification. Under the optimized conditions, GM2AP detection is based on a decrease in the current response of PMA redox probes proportionally relative to an amount of the immunocomplex. Our sensor exhibits two linear ranges of 0.005-25 and 25-400 ng mL-1 with a limit of detection (LOD) of 0.51 pg mL-1. The immunosensor is successfully applied for the determination of GM2AP in both human urine and serum samples. The proposed sensor offers the advantages of simple fabrication, low cost, rapid analysis, satisfactory stability, high selectivity and sensitivity, and good reproducibility. The LOD of the biosensor is approximately 2863 and 1804 fold lower than the clinically relevant levels in human urine and serum, respectively. Our strategy can be used as an alternative non-invasive clinical analysis method for lung cancer screening.


Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , Nanopartículas Metálicas , Biomarcadores Tumorais , Detecção Precoce de Câncer , Técnicas Eletroquímicas , Proteína Ativadora de G(M2) , Ouro , Humanos , Imunoensaio , Limite de Detecção , Pulmão , Neoplasias Pulmonares/diagnóstico , Molibdênio , Ácidos Fosfóricos , Polietilenoimina , Reprodutibilidade dos Testes
6.
Bioelectrochemistry ; 160: 108780, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39018611

RESUMO

To advance cervical cancer diagnostics, we propose a state-of-the-art label-free electrochemical immunosensor designed for the simultaneous detection of multiple biomarker proteins (p16INK4a, p53, and Ki67). This immunosensor is constructed using a polyethyleneimine-coated gold nanoparticles/2D tungsten disulfide/graphene oxide (PEI-AuNPs/2D WS2/GO) composite-modified three-screen-printed carbon electrode (3SPCE) array. The 2D WS2/GO hybrid provides a large specific surface area for supporting well-dispersed PEI-AuNPs and adsorbed redox-active species, enhancing overall performance. The PEI-AuNPs-decorated 2D WS2/GO composite not only improves electrode conductivity but also increases the antibody loading capacity. Redox-active species, including Cd2+ ions, 2,3-diaminophenazine (DAP), and methylene blue (MB), serve as distinct signaling compounds to quantitatively detect the cervical cancer biomarkers p16INK4a, p53, and Ki67, respectively. Additionally, the immunosensor demonstrates the detection with high sensitivity, good storage stability, high selectivity, and acceptable reproducibility. This immunosensor demonstrates a good linear relationship with the logarithm of protein concentrations. Additionally, the immunosensor also demonstrates high sensitivity, good storage stability, high selectivity, and acceptable reproducibility. Our promising results and the successful application of the immunosensor in detecting three tumor markers in human serum highlight its potential for clinical diagnosis of cervical cancer.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Dissulfetos , Ouro , Grafite , Nanopartículas Metálicas , Nanocompostos , Oxirredução , Polietilenoimina , Neoplasias do Colo do Útero , Grafite/química , Humanos , Neoplasias do Colo do Útero/diagnóstico , Feminino , Nanopartículas Metálicas/química , Ouro/química , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise , Nanocompostos/química , Polietilenoimina/química , Técnicas Biossensoriais/métodos , Dissulfetos/química , Imunoensaio/métodos , Técnicas Eletroquímicas/métodos , Tungstênio/química , Limite de Detecção
7.
Biomed Pharmacother ; 178: 117249, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111077

RESUMO

A new imidazolium ionic liquid (IL) halide conjugated with dimethylcardamonin (DMC, 1), namely [Bbim]Br-DMC (3), was synthesised to improve the biological activity of the natural chalcone. DMC was isolated from seeds of Syzygium nervosum A. Cunn. ex DC. which was an effective anti-breast cancer agent. The compound 1 and 3 showed anticancer activity in MDA-MB-231 cells with IC50 values of 14.54 ± 0.99 µM and 7.40 ± 0.15 µM, respectively. MTT assay showed that compound 3 had cytotoxic effect at least two-fold greater than compound 1 but was low toxic to normal cells of Hs 578Bst. After 48 h, compound 3 at concentration of IC50 value inhibited the proliferation and induced morphological changes of MDA-MB-231 cells in a time-dependent manner. The cell cycle profile also showed that compound 3 exerted anti-proliferation activity with the cell cycle arrest at G0/G1 phase and compound 3 also induced apoptosis and reduced mitochondrial membrane potential in MDA-MB-231 cells in a dose-dependent manner. In gene expression assay, compound 3 up-regulated pro-apoptotic genes such as Bax and p53 and suppressed anti-apoptotic Bcl-2 whereas there was no effect on DNA repair gene such as PARP1. The Bax/Bcl-2 ratio was significantly increased after treated with compound 3. In the molecular docking study, the interactions between compound 3 and B-DNA structure in the minor groove region via hydrogen bonds was reported. In conclusion, [Bbim]Br-DMC or compound 3 is a potential candidate to induce apoptosis and inhibits proliferation via cell cycle arrest and decreases mitochondrial membrane of triple-negative breast cancer MDA-MB-231 cells.


Assuntos
Apoptose , Proliferação de Células , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Imidazóis/farmacologia , Imidazóis/síntese química , Imidazóis/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química
8.
Front Bioeng Biotechnol ; 11: 1182880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284243

RESUMO

The quantification of alpha-fetoprotein (AFP) as a potential liver cancer biomarker which is generally found in ultratrace level is of significance in biomedical diagnostics. Therefore, it is challenging to find a strategy to fabricate a highly sensitive electrochemical device towards AFP detection through electrode modification for signal generation and amplification. This work shows the construction of a simple, reliable, highly sensitive, and label-free aptasensor based on polyethyleneimine-coated gold nanoparticles (PEI-AuNPs). A disposable ItalSens screen-printed electrode (SPE) is employed for fabricating the sensor by successive modifying with PEI-AuNPs, aptamer, bovine serum albumin (BSA), and toluidine blue (TB), respectively. The AFP assay is easily performed when the electrode is inserted into a small Sensit/Smart potentiostat connected to a smartphone. The readout signal of the aptasensor derives from the electrochemical response of TB intercalating into the aptamer-modified electrode after binding with the target. The decrease in current response of the proposed sensor is proportional to the AFP concentration due to the restriction of the electron transfer pathway of TB by a number of insulating AFP/aptamer complexes on the electrode surface. PEI-AuNPs improve SPE's reactivity and provide a large surface area for aptamer immobilization whereas aptamer provides selectivity to the target AFP. Consequently, this electrochemical biosensor is highly sensitive and selective for AFP analysis. The developed assay reveals a linear range of detection from 10 to 50000 pg mL-1 with R 2 = 0.9977 and provided a limit of detection (LOD) of 9.5 pg mL-1 in human serum. With its simplicity and robustness, it is anticipated that this electrochemical-based aptasensor will be a benefit for the clinical diagnosis of liver cancer and further developed for other biomarkers analysis.

9.
Eur J Pharm Sci ; 184: 106390, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36813001

RESUMO

We modified the chemical structure of 2',4'-dihydroxy-6'­methoxy-3',5'-dimethylchalcone (DMC, 1), a phytochemical found in the seed of Syzygium nervosum A.Cunn. ex DC., by conjugation with the amino acid L-alanine (compound 3a) or L-valine (compound 3b) to enhance anticancer activity and water solubility. Compounds 3a and 3b had antiproliferative activity in human cervical cancer cell lines (C-33A, SiHa and HeLa), with half-maximal inhibitory concentrations (IC50) of 7.56 ± 0.27 and 8.24 ± 0.14 µM, respectively in SiHa cells; these values were approximately two-fold greater than DMC. We investigated the biological activities of compounds 3a and 3b based on a wound healing assay, a cell cycle assay and messenger RNA (mRNA) expression analysis to determine the possible mechanism of anticancer activity. Compounds 3a and 3b inhibited SiHa cell migration in the wound healing assay. After treatment with compounds 3a and 3b, there was an increase in SiHa cells in the G1 phase, indicative of cell cycle arrest. Moreover, compound 3a showed potential anticancer activity by upregulating TP53 and CDKN1A that resulted in upregulation of BAX and downregulation of CDK2 and BCL2, leading to apoptosis and cell cycle arrest. The BAX/BCL2 expression ratio was increased after treatment with compound 3avia the intrinsic apoptotic pathway. In silico molecular dynamics simulation and binding free energy calculation shed light on how these DMC derivatives interact with the HPV16 E6 protein, a viral oncoprotein associated with cervical cancer. Our findings suggest that compound 3a is a potential candidate for anti-cervical cancer drug development.


Assuntos
Antineoplásicos , Humanos , Pontos de Checagem da Fase G1 do Ciclo Celular , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Linhagem Celular Tumoral , Regulação para Cima , Apoptose , Ciclo Celular , Aminoácidos , Proliferação de Células , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
10.
RSC Adv ; 13(50): 34987-35002, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38046636

RESUMO

The fabrication of mangiferin nanoparticles using an electrospraying technique is a new and promising method for developing nanoparticles with higher efficiency and safety. This study aimed to fabricate mangiferin nanoparticles (MNPs) using cellulose acetate (CA) as a polymer at various parameters using electrospraying. Commercial mangiferin (CM) was purified from 88.46 to 95.71% by a recrystallization method to improve its purity and biological activities and remove any residue. The properties of recrystallized mangiferin (RM) were characterized using DSC, FTIR, X-ray diffraction (XRD) and HPLC. Then its biological activity and proteomics were determined. Proteomics analysis of RM showed that up-regulated proteins were involved in more biological processes than CM. MNPs were fabricated by varying the electrospraying parameters including voltage, the distance between the needle-tip-collector and flow rate. Skin permeation, release and irritation were also evaluated. The results revealed that the average particle size of the MNPs ranged between 295.47 ± 5.58 and 448.87 ± 3.00 nm, and had a smooth spherical morphology in SEM images. The MNPs also showed good potential in antioxidant and anti-aging properties. The encapsulation efficiency of MNPs was determined to be 85.31%. From skin permeation studies of CM, RM, and MNPs, the mangiferin content was found in the stratum corneum and dermis skin layers. Moreover, the MNPs solution had 23.68 ± 0.27% and 11.98 ± 0.13% of mangiferin in the stratum corneum and viable epidermis and dermis, respectively. Additionally, the irritation test by HET-CAM was mild and safe. Therefore, MNPs produced by electrospraying are a promising delivery system for cosmetic/cosmeceutical applications.

11.
Nanomaterials (Basel) ; 13(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37999285

RESUMO

Mango (Mangifera indica L.) is one of the most economically important fruits in Thailand. Mango has been used as a traditional medicine because it possesses many biological activities, such as antioxidant properties, anti-inflammatory properties, microorganism-growth inhibition, etc. Among its natural pharmacologically active compounds, mangiferin is the main active component found in mango leaves. Mangiferin has the potential to treat a variety of diseases due to its multifunctional activities. This study aims to prepare a mangiferin-rich extract (MRE) from mango leaves and develop nanoparticles containing the MRE using an electrospraying technique to apply it in a cosmeceutical formulation. The potential cosmeceutical mechanisms of the MRE were investigated using proteomic analysis. The MRE is involved in actin-filament organization, the positive regulation of cytoskeleton organization, etc. Moreover, the related mechanism to its cosmeceutical activity is metalloenzyme-activity regulation. Nanoparticles were prepared from 0.8% w/v MRE and 2% w/v Eudragit® L100 solution using an electrospraying process. The mean size of the MRE-loaded nanoparticles (MNPs) received was 247.8 nm, with a PDI 0.271. The MRE entrapment by the process was quantified as 84.9%, indicating a high encapsulation efficiency. For the skin-retention study, the mangiferin content in the MNP-containing emulsion-gel membranes was examined and found to be greater than in the membranes of the MRE solution, illustrating that the MNPs produced by the electrospraying technique help transdermal delivery for cosmetic applications.

12.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37765000

RESUMO

Combining phytochemicals with chemotherapeutic drugs has demonstrated the potential to surmount drug resistance. In this paper, we explore the efficacy of pentagalloyl glucose (PGG) in modulating P-gp and reversing multidrug resistance (MDR) in drug-resistant leukemic cells (K562/ADR). The cytotoxicity of PGG was evaluated using a CCK-8 assay, and cell apoptosis was assessed using flow cytometry. Western blotting was used to analyze protein expression levels. P-glycoprotein (P-gp) activity was evaluated by monitoring the kinetics of P-gp-mediated efflux of pirarubicin (THP). Finally, molecular docking, molecular dynamics simulation, and molecular mechanics with generalized Born and surface area solvation (MM-GBSA) calculation were conducted to investigate drug-protein interactions. We found that PGG selectively induced cytotoxicity in K562/ADR cells and enhanced sensitivity to doxorubicin (DOX), indicating its potential as a reversal agent. PGG reduced the expression of P-gp and its gene transcript levels. Additionally, PGG inhibited P-gp-mediated efflux and increased intracellular drug accumulation in drug-resistant cells. Molecular dynamics simulations and MM-GBSA calculation provided insights into the binding affinity of PGG to P-gp, suggesting that PGG binds tightly to both the substrate and the ATP binding sites of P-gp. These findings support the potential of PGG to target P-gp, reverse drug resistance, and enhance the efficacy of anticancer therapies.

13.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35890129

RESUMO

Although cisplatin is a first-line chemotherapy drug for head and neck squamous cell carcinoma (HNSCC), its therapeutic efficacy is limited owing to serious side effects and acquired drug resistance. This study determined whether combining pentagalloyl glucose (PGG) and cisplatin enhanced their anti-tumor activities on HNSCC cell lines. We investigated the anticancer effect of PGG combined with cisplatin in 2D and 3D multicellular spheroid cell culture. The results revealed that PGG combined with cisplatin inhibited cell viability and produced synergistic effects. PGG potentiates the anticancer effect of cisplatin by promoting apoptosis and inhibiting cell migration. The western blot and molecular docking analysis revealed that the synergistic effect of the combination treatment may be related to the PGG-mediated reduced expression of phosphorylated STAT3 and phosphorylated Akt. Furthermore, we found that the combined treatment of PGG and cisplatin's effect on 3D multicellular spheroid size was more potent than the monotherapies. Our findings indicated that the combination therapy of PGG and cisplatin synergistically inhibited HNSCC cancer cell viability and induced apoptosis in 2D and 3D models. The present results suggested that PGG may be a promising adjunct drug used with cisplatin for a practical therapeutic approach to head and neck cancer.

14.
BMC Complement Med Ther ; 21(1): 189, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217266

RESUMO

BACKGROUND: Radioresistance can pose a significant obstacle to the effective treatment of breast cancers. Epithelial-mesenchymal transition (EMT) is a critical step in the acquisition of stem cell traits and radioresistance. Here, we investigated whether Maprang seed extract (MPSE), a gallotannin-rich extract of seed from Bouea macrophylla Griffith, could inhibit the radiation-induced EMT process and enhance the radiosensitivity of breast cancer cells. METHODS: Breast cancer cells were pre-treated with MPSE before irradiation (IR), the radiosensitizing activity of MPSE was assessed using the colony formation assay. Radiation-induced EMT and stemness phenotype were identified using breast cancer stem cells (CSCs) marker (CD24-/low/CD44+) and mammosphere formation assay. Cell motility was determined via the wound healing assay and transwell migration. Radiation-induced cell death was assessed via the apoptosis assay and SA-ß-galactosidase staining for cellular senescence. CSCs- and EMT-related genes were confirmed by real-time PCR (qPCR) and Western blotting. RESULTS: Pre-treated with MPSE before irradiation could reduce the clonogenic activity and enhance radiosensitivity of breast cancer cell lines with sensitization enhancement ratios (SERs) of 2.33 and 1.35 for MCF7 and MDA-MB231cells, respectively. Pretreatment of breast cancer cells followed by IR resulted in an increased level of DNA damage maker (γ-H2A histone family member) and enhanced radiation-induced cell death. Irradiation induced EMT process, which displayed a significant EMT phenotype with a down-regulated epithelial marker E-cadherin and up-regulated mesenchymal marker vimentin in comparison with untreated breast cancer cells. Notably, we observed that pretreatment with MPSE attenuated the radiation-induced EMT process and decrease some stemness-like properties characterized by mammosphere formation and the CSC marker. Furthermore, pretreatment with MPSE attenuated the radiation-induced activation of the pro-survival pathway by decrease the expression of phosphorylation of ERK and AKT and sensitized breast cancer cells to radiation. CONCLUSION: MPSE enhanced the radiosensitivity of breast cancer cells by enhancing IR-induced DNA damage and cell death, and attenuating the IR-induced EMT process and stemness phenotype via targeting survival pathways PI3K/AKT and MAPK in irradiated breast cancer cells. Our findings describe a novel strategy for increasing the efficacy of radiotherapy for breast cancer patients using a safer and low-cost natural product, MPSE.


Assuntos
Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação , Extratos Vegetais/farmacologia , Radiossensibilizantes/farmacologia , Anacardiaceae/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama , Linhagem Celular Tumoral , Feminino , Humanos , Taninos Hidrolisáveis/farmacologia , Sementes/química
15.
Contrast Media Mol Imaging ; 2020: 8877862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33456403

RESUMO

In cell therapy, contrast agents T1 and T2 are both needed for the labeling and tracking of transplanted stem cells over extended periods of time through magnetic resonance imaging (MRI). Importantly, the metal-quercetin complex via coordination chemistry has been studied extensively for biomedical applications, such as anticancer therapies and imaging probes. Herein, we report on the synthesis, characterization, and labeling of the iron (III)-quercetin complex, "IronQ," in circulating proangiogenic cells (CACs) and also explore tracking via the use of a clinical 1.5 Tesla (T) MRI scanner. Moreover, IronQ had a paramagnetic T1 positive contrast agent property with a saturation magnetization of 0.155 emu/g at 1.0 T and longitudinal relaxivity (r1) values of 2.29 and 3.70 mM-1s-1 at 1.5 T for water and human plasma, respectively. Surprisingly, IronQ was able to promote CAC growth in conventional cell culture systems without the addition of specific growth factors. Increasing dosages of IronQ from 0 to 200 µg/mL led to higher CAC uptake, and maximum labeling time was achieved in 10 days. The accumulated IronQ in CACs was measured by two methodologies, an inductively coupled plasma optical emission spectrometry (ICP-EOS) and T1-weighted MRI. In our research, we confirmed that IronQ has excellent dual functions with the use of an imaging probe for MRI. IronQ can also act as a stimulating agent by favoring circulating proangiogenic cell differentiation. Optimistically, IronQ is considered beneficial for alternative labeling and in the tracking of circulation proangiogenic cells and/or other stem cells in applications of cell therapy through noninvasive magnetic resonance imaging in both preclinical and clinical settings.


Assuntos
Rastreamento de Células/métodos , Meios de Contraste/química , Ferro/química , Leucócitos Mononucleares/citologia , Imageamento por Ressonância Magnética/métodos , Neovascularização Fisiológica , Quercetina/química , Diferenciação Celular , Proliferação de Células , Humanos , Imagens de Fantasmas , Medicina Regenerativa
16.
Artigo em Inglês | MEDLINE | ID: mdl-32382295

RESUMO

Bouea macrophylla Griffith, locally known as maprang, has important economic value as a Thai fruit tree. The maprang seed extract (MPSE) has been shown to exhibit antibacterial and anticancer activities. However, the bioactive constituents in MPSE and the molecular mechanisms underlying these anticancer activities remain poorly understood. This study aims to identify the active compounds in MPSE and to investigate the mechanisms involved in MPSE-induced apoptosis in MCF-7 treated cancer cells. The cytotoxic effect was determined by MTT assay. The apoptosis induction of MPSE was evaluated in terms of ROS production, mitochondrial membrane potential depolarization, and apoptosis-related gene expression. The compounds identified by HPLC and LC/MS analysis were pentagalloyl glucose, ethyl gallate, and gallic acid. MPSE treatment decreased cell proliferation in MCF-7 cells, and MPSE was postulated to induce G2/M phase cell cycle arrest. MPSE was found to promote intracellular ROS production in MCF-7 treated cells and to also influence the depolarization of mitochondrial membrane potential. In addition, MPSE treatment can lead to increase in the Bax/Bcl-2 gene expression ratio, suggesting that MPSE-induced apoptosis is mitochondria-dependent pathway. Our results suggest that natural products obtained from maprang seeds have the potential to target the apoptosis pathway in breast cancer treatments.

17.
Nucleic Acids Res ; 35(11): 3573-80, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17483513

RESUMO

Protein synthesis utilizes a large proportion of the available free energy in the eukaryotic cell and must be precisely controlled, yet up to now there has been no systematic rate control analysis of the in vivo process. We now present a novel study of rate control by eukaryotic translation initiation factors (eIFs) using yeast strains in which chromosomal eIF genes have been placed under the control of the tetO7 promoter system. The results reveal that, contrary to previously published reports, control of the initiation pathway is distributed over all of the eIFs, whereby rate control (the magnitude of their respective component control coefficients) follows the order: eIF4G > eIF1A > eIF4E > eIF5B. The apparent rate control effects of eIFs observed in standard cell-free extract experiments, on the other hand, do not accurately reflect the steady state in vivo data. Overall, this work establishes the first quantitative control framework for the study of in vivo eukaryotic translation.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Doxiciclina/farmacologia , Fatores de Iniciação em Eucariotos/biossíntese , Fatores de Iniciação em Eucariotos/genética , Expressão Gênica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Gene ; 627: 538-542, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28694208

RESUMO

Mitochondrial DNA (mtDNA) analysis has displayed an important role and been considered as a powerful tool in various fields of forensic science applications. Nowadays, single nucleotide polymorphisms (SNPs) on mtDNA have become additional DNA markers when conventional STR typing practically fails. mtDNA sequencing of polymerase chain reaction (PCR) products from the hypervariable region I (HVRI) and II (HVRII) is the standard method of mtDNA analysis. However, mtDNA sequencing is rather expensive, time consuming and technically complex. This study aims to develop the SNPs minisequencing for screening of Thai populations. For this purpose, sixteen SNPs that possess high discriminating power in hypervariable regions were selected. The DNA samples were obtained from 100 buccal swab samples of Thai healthy individuals. All DNA samples were extracted and were subsequently amplified by single duplex PCR technique. The duplex PCR products were genotyped by SNPs minisequencing. Based on 16 SNPs, a total of 63 haplotypes were observed of which 46 haplotypes were unique. The haplotype diversity, discriminating power and random match probability were calculated to be 0.9830, 0.9732 and 0.0268, respectively. The SNPs at 150, 199, 489, 16129, 16189, 16223, and 16304 were highly polymorphic in the studied population. Our results suggested that the SNPs minisequencing can be an alternative method of SNPs genotyping. This method can be used for an exclusion of a large number of mismatch samples and as a presumptive test prior to do confirmatory mtDNA sequencing.


Assuntos
DNA Mitocondrial/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Povo Asiático/genética , Haplótipos , Humanos , Tailândia
19.
J Forensic Leg Med ; 41: 10-4, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27107562

RESUMO

This study analyzed the nucleotide sequences of the hypervariable region III (HVRIII) of mitochondrial DNA in Thai individuals. Buccal swab samples were randomly obtained from 100 healthy, unrelated, adult (18-60 years old), volunteer donors living in Thailand. Eighteen different haplotypes were found, of which 11 haplotypes were unique. The most frequent haplotypes observed were 522D-523D. Nucleotide transition from Thymine (T) to Cytosine (C) at position 489 (43%) was the most frequent substitution. Nucleotide transversions were also observed at position 433 (Adenine (A) to C, 1%) and position 499 (Guanine (G) to C, 1%). Fifty-three samples presented nucleotide insertion and deletion of C and A (CA) at position 514-523. Insertion of 1AC (3%) and 2AC (2%) were observed. Deletion of 1CA (53%) and 2CA (2%) at position 514-523 were revealed. The deletion of T at position 459 was observed. The haplotype diversity, random match probability, and discrimination power were calculated to be 0.7770, 0.2308, and 0.7692, respectively.


Assuntos
DNA Mitocondrial/genética , Análise de Sequência de DNA , Adolescente , Adulto , Povo Asiático/genética , Haplótipos , Humanos , Mutação INDEL , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo Genético , Tailândia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA