Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(5): 1866-1873, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35170318

RESUMO

Nanoelectromechanical resonators have been successfully used for a variety of sensing applications. Their extreme resolution comes from their small size, which strongly limits their capture area. This leads to a long analysis time and the requirement for large sample quantity. Moreover, the efficiency of the electrical transductions commonly used for silicon resonators degrades with increasing frequency, limiting the achievable mechanical bandwidth and throughput. Multiplexing a large number of high-frequency resonators appears to be a solution, but this is complex with electrical transductions. We propose here a route to solve these issues, with a multiplexing scheme for very high-frequency optomechanical resonators. We demonstrate the simultaneous frequency measurement of three silicon microdisks fabricated with a 200 mm wafer large-scale process. The readout architecture is simple and does not degrade the sensing resolutions. This paves the way toward the realization of sensors for multiparametric analysis with an extremely low limit of detection and response time.

2.
Nanotechnology ; 26(14): 145502, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25786069

RESUMO

A stepped cantilever composed of a bottom-up silicon nanowire coupled to a top-down silicon microcantilever electrostatically actuated and with capacitive or optical readout is fabricated and analyzed, both theoretically and experimentally, for mass sensing applications. The mass sensitivity at the nanowire free end and the frequency resolution considering thermomechanical noise are computed for different nanowire dimensions. The results obtained show that the coupled structure presents a very good mass sensitivity thanks to the nanowire, where the mass depositions take place, while also presenting a very good frequency resolution due to the microcantilever, where the transduction is carried out. A two-fold improvement in mass sensitivity with respect to that of the microcantilever standalone is experimentally demonstrated, and at least an order-of-magnitude improvement is theoretically predicted, only changing the nanowire length. Very close frequency resolutions are experimentally measured and theoretically predicted for a standalone microcantilever and for a microcantilever-nanowire coupled system. Thus, an improvement in mass sensing resolution of the microcantilever-nanowire stepped cantilever is demonstrated with respect to that of the microcantilever standalone.

3.
Sensors (Basel) ; 15(7): 17036-47, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26184222

RESUMO

A top-down clamped-clamped beam integrated in a CMOS technology with a cross section of 500 nm × 280 nm has been electrostatic actuated and sensed using two different transduction methods: capacitive and piezoresistive. The resonator made from a single polysilicon layer has a fundamental in-plane resonance at 27 MHz. Piezoresistive transduction avoids the effect of the parasitic capacitance assessing the capability to use it and enhance the CMOS-NEMS resonators towards more efficient oscillator. The displacement derived from the capacitive transduction allows to compute the gauge factor for the polysilicon material available in the CMOS technology.

4.
Front Chem ; 11: 1238674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841207

RESUMO

Mass measurements in the mega-to giga-Dalton range are essential for the characterization of natural and synthetic nanoparticles, but very challenging to perform using conventional mass spectrometers. Nano-electro-mechanical system (NEMS) based MS has demonstrated unique capabilities for the analysis of ultra-high mass analytes. Yet, system designs to date included constraints transferred from conventional MS instruments, such as ion guides and high vacuum requirements. Encouraged by other reports, we investigated the influence of pressure on the performances of the NEMS sensor and the aerodynamic focusing lens that equipped our first-generation instrument. We thus realized that the NEMS spectrometer could operate at significantly higher pressures than anticipated without compromising particle focusing nor mass measurement quality. Based on these observations, we designed and constructed a new NEMS-MS prototype considerably more compact than our original system, and which features an improved aerodynamic lens alignment concept, yielding superior particle focusing. We evaluated this new prototype by performing nanoparticle deposition to characterize aerodynamic focusing, and mass measurements of calibrated gold nanoparticles samples. The particle capture efficiency showed nearly two orders of magnitude improvement compared to our previous prototype, while operating at two orders of magnitude greater pressure, and without compromising mass resolution.

5.
Nat Commun ; 11(1): 3781, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728047

RESUMO

Nanomechanical mass spectrometry has proven to be well suited for the analysis of high mass species such as viruses. Still, the use of one-dimensional devices such as vibrating beams forces a trade-off between analysis time and mass resolution. Complex readout schemes are also required to simultaneously monitor multiple resonance modes, which degrades resolution. These issues restrict nanomechanical MS to specific species. We demonstrate here single-particle mass spectrometry with nano-optomechanical resonators fabricated with a Very Large Scale Integration process. The unique motion sensitivity of optomechanics allows designs that are impervious to particle position, stiffness or shape, opening the way to the analysis of large aspect ratio biological objects of great significance such as viruses with a tail or fibrils. Compared to top-down beam resonators with electrical read-out and state-of-the-art mass resolution, we show a three-fold improvement in capture area with no resolution degradation, despite the use of a single resonance mode.


Assuntos
Espectrometria de Massas/métodos , Nanotecnologia/métodos , Dispositivos Ópticos , Imagem Individual de Molécula/métodos , Amiloide/química , Desenho de Equipamento , Espectrometria de Massas/instrumentação , Nanopartículas/química , Nanotecnologia/instrumentação , Imagem Individual de Molécula/instrumentação , Vírus/química
6.
Science ; 362(6417): 918-922, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30467165

RESUMO

Measurement of the mass of particles in the mega- to gigadalton range is challenging with conventional mass spectrometry. Although this mass range appears optimal for nanomechanical resonators, nanomechanical mass spectrometers often suffer from prohibitive sample loss, extended analysis time, or inadequate resolution. We report on a system architecture combining nebulization of the analytes from solution, their efficient transfer and focusing without relying on electromagnetic fields, and the mass measurements of individual particles using nanomechanical resonator arrays. This system determined the mass distribution of ~30-megadalton polystyrene nanoparticles with high detection efficiency and effectively performed molecular mass measurements of empty or DNA-filled bacteriophage T5 capsids with masses up to 105 megadaltons using less than 1 picomole of sample and with an instrument resolution above 100.


Assuntos
Capsídeo/química , Capsídeo/ultraestrutura , Espectrometria de Massas/métodos , Nanotecnologia/métodos , DNA Viral/química , Campos Eletromagnéticos , Nanopartículas/química , Poliestirenos/química , Fagos T/química , Fagos T/ultraestrutura
7.
Nat Commun ; 9(1): 3283, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115919

RESUMO

One of the main challenges to overcome to perform nanomechanical mass spectrometry analysis in a practical time frame stems from the size mismatch between the analyte beam and the small nanomechanical detector area. We report here the demonstration of mass spectrometry with arrays of 20 multiplexed nanomechanical resonators; each resonator is designed with a distinct resonance frequency which becomes its individual address. Mass spectra of metallic aggregates in the MDa range are acquired with more than one order of magnitude improvement in analysis time compared to individual resonators. A 20 NEMS array is probed in 150 ms with the same mass limit of detection as a single resonator. Spectra acquired with a conventional time-of-flight mass spectrometer in the same system show excellent agreement. We also demonstrate how mass spectrometry imaging at the single-particle level becomes possible by mapping a 4-cm-particle beam in the MDa range and above.

8.
Nat Nanotechnol ; 11(6): 552-558, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26925826

RESUMO

Frequency stability is key to the performance of nanoresonators. This stability is thought to reach a limit with the resonator's ability to resolve thermally induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature and found a similar discrepancy. We propose a new method to show that this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices.

10.
Nat Commun ; 5: 4313, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25000256

RESUMO

Highly sensitive conversion of motion into readable electrical signals is a crucial and challenging issue for nanomechanical resonators. Efficient transduction is particularly difficult to realize in devices of low dimensionality, such as beam resonators based on carbon nanotubes or silicon nanowires, where mechanical vibrations combine very high frequencies with miniscule amplitudes. Here we describe an enhanced piezoresistive transduction mechanism based on the asymmetry of the beam shape at rest. We show that this mechanism enables highly sensitive linear detection of the vibration of low-resistivity silicon beams without the need of exceptionally large piezoresistive coefficients. The general application of this effect is demonstrated by detecting multiple-order modes of silicon nanowire resonators made by either top-down or bottom-up fabrication methods. These results reveal a promising approach for practical applications of the simplest mechanical resonators, facilitating its manufacturability by very large-scale integration technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA