Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 782175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369445

RESUMO

Komagataeibacter is the dominant taxon and cellulose-producing bacteria in the Kombucha Microbial Community (KMC). This is the first study to isolate the K. oboediens genome from a reactivated space-exposed KMC sample and comprehensively characterize it. The space-exposed genome was compared with the Earth-based reference genome to understand the genome stability of K. oboediens under extraterrestrial conditions during a long time. Our results suggest that the genomes of K. oboediens IMBG180 (ground sample) and K. oboediens IMBG185 (space-exposed) are remarkably similar in topology, genomic islands, transposases, prion-like proteins, and number of plasmids and CRISPR-Cas cassettes. Nonetheless, there was a difference in the length of plasmids and the location of cas genes. A small difference was observed in the number of protein coding genes. Despite these differences, they do not affect any genetic metabolic profile of the cellulose synthesis, nitrogen-fixation, hopanoid lipids biosynthesis, and stress-related pathways. Minor changes are only observed in central carbohydrate and energy metabolism pathways gene numbers or sequence completeness. Altogether, these findings suggest that K. oboediens maintains its genome stability and functionality in KMC exposed to the space environment most probably due to the protective role of the KMC biofilm. Furthermore, due to its unaffected metabolic pathways, this bacterial species may also retain some promising potential for space applications.

2.
Appl Plant Sci ; 8(8): e11385, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999772

RESUMO

PREMISE: Maize yields have significantly increased over the past half-century owing to advances in breeding and agronomic practices. Plants have been grown in increasingly higher densities due to changes in plant architecture resulting in plants with more upright leaves, which allows more efficient light interception for photosynthesis. Natural variation for leaf angle has been identified in maize and sorghum using multiple mapping populations. However, conventional phenotyping techniques for leaf angle are low throughput and labor intensive, and therefore hinder a mechanistic understanding of how the leaf angle of individual leaves changes over time in response to the environment. METHODS: High-throughput time series image data from water-deprived maize (Zea mays subsp. mays) and sorghum (Sorghum bicolor) were obtained using battery-powered time-lapse cameras. A MATLAB-based image processing framework, Leaf Angle eXtractor (LAX), was developed to extract and quantify leaf angles from images of maize and sorghum plants under drought conditions. RESULTS: Leaf angle measurements showed differences in leaf responses to drought in maize and sorghum. Tracking leaf angle changes at intervals as short as one minute enabled distinguishing leaves that showed signs of wilting under water deprivation from other leaves on the same plant that did not show wilting during the same time period. DISCUSSION: Automating leaf angle measurements using LAX makes it feasible to perform large-scale experiments to evaluate, understand, and exploit the spatial and temporal variations in plant response to water limitations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA