Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nature ; 583(7817): 638-643, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555463

RESUMO

N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that is present on tRNA and rRNA and has recently been investigated in eukaryotic mRNA1-3. However, the distribution, dynamics and functions of cytidine acetylation have yet to be fully elucidated. Here we report ac4C-seq, a chemical genomic method for the transcriptome-wide quantitative mapping of ac4C at single-nucleotide resolution. In human and yeast mRNAs, ac4C sites are not detected but can be induced-at a conserved sequence motif-via the ectopic overexpression of eukaryotic acetyltransferase complexes. By contrast, cross-evolutionary profiling revealed unprecedented levels of ac4C across hundreds of residues in rRNA, tRNA, non-coding RNA and mRNA from hyperthermophilic archaea. Ac4C is markedly induced in response to increases in temperature, and acetyltransferase-deficient archaeal strains exhibit temperature-dependent growth defects. Visualization of wild-type and acetyltransferase-deficient archaeal ribosomes by cryo-electron microscopy provided structural insights into the temperature-dependent distribution of ac4C and its potential thermoadaptive role. Our studies quantitatively define the ac4C landscape, providing a technical and conceptual foundation for elucidating the role of this modification in biology and disease4-6.


Assuntos
Acetilação , Citidina/análogos & derivados , Células Eucarióticas/metabolismo , Evolução Molecular , RNA/química , RNA/metabolismo , Archaea/química , Archaea/citologia , Archaea/genética , Archaea/crescimento & desenvolvimento , Sequência Conservada , Microscopia Crioeletrônica , Citidina/metabolismo , Células Eucarióticas/citologia , Células HeLa , Humanos , Modelos Moleculares , Acetiltransferases N-Terminal/metabolismo , RNA Arqueal/química , RNA Arqueal/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Temperatura
2.
J Biol Chem ; 300(1): 105503, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013090

RESUMO

Hyperthermophilic organisms thrive in extreme environments prone to high levels of DNA damage. Growth at high temperature stimulates DNA base hydrolysis resulting in apurinic/apyrimidinic (AP) sites that destabilize the genome. Organisms across all domains have evolved enzymes to recognize and repair AP sites to maintain genome stability. The hyperthermophilic archaeon Thermococcus kodakarensis encodes several enzymes to repair AP site damage including the essential AP endonuclease TK endonuclease IV. Recently, using functional genomic screening, we discovered a new family of AP lyases typified by TK0353. Here, using biochemistry, structural analysis, and genetic deletion, we have characterized the TK0353 structure and function. TK0353 lacks glycosylase activity on a variety of damaged bases and is therefore either a monofunctional AP lyase or may be a glycosylase-lyase on a yet unidentified substrate. The crystal structure of TK0353 revealed a novel fold, which does not resemble other known DNA repair enzymes. The TK0353 gene is not essential for T. kodakarensis viability presumably because of redundant base excision repair enzymes involved in AP site processing. In summary, TK0353 is a novel AP lyase unique to hyperthermophiles that provides redundant repair activity necessary for genome maintenance.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Thermococcus , Desoxirribonuclease IV (Fago T4-Induzido) , Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Thermococcus/enzimologia , Thermococcus/genética
3.
Mol Microbiol ; 121(5): 882-894, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38372181

RESUMO

The sole unifying feature of the incredibly diverse Archaea is their isoprenoid-based ether-linked lipid membranes. Unique lipid membrane composition, including an abundance of membrane-spanning tetraether lipids, impart resistance to extreme conditions. Many questions remain, however, regarding the synthesis and modification of tetraether lipids and how dynamic changes to archaeal lipid membrane composition support hyperthermophily. Tetraether membranes, termed glycerol dibiphytanyl glycerol tetraethers (GDGTs), are generated by tetraether synthase (Tes) by joining the tails of two bilayer lipids known as archaeol. GDGTs are often further specialized through the addition of cyclopentane rings by GDGT ring synthase (Grs). A positive correlation between relative GDGT abundance and entry into stationary phase growth has been observed, but the physiological impact of inhibiting GDGT synthesis has not previously been reported. Here, we demonstrate that the model hyperthermophile Thermococcus kodakarensis remains viable when Tes (TK2145) or Grs (TK0167) are deleted, permitting phenotypic and lipid analyses at different temperatures. The absence of cyclopentane rings in GDGTs does not impact growth in T. kodakarensis, but an overabundance of rings due to ectopic Grs expression is highly fitness negative at supra-optimal temperatures. In contrast, deletion of Tes resulted in the loss of all GDGTs, cyclization of archaeol, and loss of viability upon transition to the stationary phase in this model archaea. These results demonstrate the critical roles of highly specialized, dynamic, isoprenoid-based lipid membranes for archaeal survival at high temperatures.


Assuntos
Lipídeos de Membrana , Thermococcus , Lipídeos de Membrana/metabolismo , Thermococcus/metabolismo , Thermococcus/genética , Éteres de Glicerila/metabolismo , Proteínas Arqueais/metabolismo , Archaea/metabolismo , Lipídeos/química
4.
Proc Natl Acad Sci U S A ; 119(32): e2207581119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917344

RESUMO

Transcription must be properly regulated to ensure dynamic gene expression underlying growth, development, and response to environmental cues. Regulation is imposed throughout the transcription cycle, and while many efforts have detailed the regulation of transcription initiation and early elongation, the termination phase of transcription also plays critical roles in regulating gene expression. Transcription termination can be driven by only a few proteins in each domain of life. Detailing the mechanism(s) employed provides insight into the vulnerabilities of transcription elongation complexes (TECs) that permit regulated termination to control expression of many genes and operons. Here, we describe the biochemical activities and crystal structure of the superfamily 2 helicase Eta, one of two known factors capable of disrupting archaeal transcription elongation complexes. Eta retains a twin-translocase core domain common to all superfamily 2 helicases and a well-conserved C terminus wherein individual amino acid substitutions can critically abrogate termination activities. Eta variants that perturb ATPase, helicase, single-stranded DNA and double-stranded DNA translocase and termination activities identify key regions of the C terminus of Eta that, when combined with modeling Eta-TEC interactions, provide a structural model of Eta-mediated termination guided in part by structures of Mfd and the bacterial TEC. The susceptibility of TECs to disruption by termination factors that target the upstream surface of RNA polymerase and potentially drive termination through forward translocation and allosteric mechanisms that favor opening of the clamp to release the encapsulated nucleic acids emerges as a common feature of transcription termination mechanisms.


Assuntos
Proteínas Arqueais , DNA Helicases , Thermococcus , Fatores de Transcrição , Terminação da Transcrição Genética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cristalografia , DNA Helicases/química , DNA Helicases/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Domínios Proteicos , Thermococcus/enzimologia , Thermococcus/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
5.
Annu Rev Genet ; 47: 539-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24050175

RESUMO

Genetic techniques for the Archaea have undergone a rapid expansion in complexity, resulting in increased exploration of the role of Archaea in the environment and detailed analyses of the molecular physiology and information-processing systems in the third domain of life. Complementary gains in describing the ever-increasing diversity of archaeal organisms have allowed these techniques to be leveraged in new and imaginative ways to elucidate shared and unique aspects of archaeal diversity and metabolism. In this review, we introduce the four archaeal clades for which advanced genetic techniques are available--the methanogens, halophiles, Sulfolobales, and Thermococcales--with the aim of providing an overall profile of the advantages and disadvantages of working within each clade, as essentially all of the genetically accessible archaeal organisms require unique culturing techniques that present real challenges. We discuss the full repertoire of techniques possible within these clades while highlighting the recent advances that have been made by taking advantage of the most prominent techniques and approaches.


Assuntos
Archaea/genética , Regulação da Expressão Gênica em Archaea , Técnicas Genéticas , Técnicas Microbiológicas , Archaea/classificação , Archaea/fisiologia , Proteínas Arqueais/genética , Proteínas Arqueais/fisiologia , Biodiversidade , DNA Arqueal/genética , Técnicas de Transferência de Genes , Genes Arqueais , Genes Reporter , Vetores Genéticos/genética , Genótipo , Fenótipo , Filogenia , Plasmídeos/genética , Regiões Promotoras Genéticas , Seleção Genética
6.
J Bacteriol ; 202(8)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32041795

RESUMO

Archaeosine (G+) is a structurally complex modified nucleoside found quasi-universally in the tRNA of Archaea and located at position 15 in the dihydrouridine loop, a site not modified in any tRNA outside the Archaea G+ is characterized by an unusual 7-deazaguanosine core structure with a formamidine group at the 7-position. The location of G+ at position 15, coupled with its novel molecular structure, led to a hypothesis that G+ stabilizes tRNA tertiary structure through several distinct mechanisms. To test whether G+ contributes to tRNA stability and define the biological role of G+, we investigated the consequences of introducing targeted mutations that disrupt the biosynthesis of G+ into the genome of the hyperthermophilic archaeon Thermococcus kodakarensis and the mesophilic archaeon Methanosarcina mazei, resulting in modification of the tRNA with the G+ precursor 7-cyano-7-deazaguansine (preQ0) (deletion of arcS) or no modification at position 15 (deletion of tgtA). Assays of tRNA stability from in vitro-prepared and enzymatically modified tRNA transcripts, as well as tRNA isolated from the T. kodakarensis mutant strains, demonstrate that G+ at position 15 imparts stability to tRNAs that varies depending on the overall modification state of the tRNA and the concentration of magnesium chloride and that when absent results in profound deficiencies in the thermophily of T. kodakarensisIMPORTANCE Archaeosine is ubiquitous in archaeal tRNA, where it is located at position 15. Based on its molecular structure, it was proposed to stabilize tRNA, and we show that loss of archaeosine in Thermococcus kodakarensis results in a strong temperature-sensitive phenotype, while there is no detectable phenotype when it is lost in Methanosarcina mazei Measurements of tRNA stability show that archaeosine stabilizes the tRNA structure but that this effect is much greater when it is present in otherwise unmodified tRNA transcripts than in the context of fully modified tRNA, suggesting that it may be especially important during the early stages of tRNA processing and maturation in thermophiles. Our results demonstrate how small changes in the stability of structural RNAs can be manifested in significant biological-fitness changes.


Assuntos
Guanosina/análogos & derivados , Methanosarcina/metabolismo , RNA Arqueal/genética , RNA de Transferência/genética , Thermococcus/metabolismo , Guanosina/metabolismo , Methanosarcina/química , Methanosarcina/genética , Estabilidade de RNA , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Thermococcus/química , Thermococcus/genética
7.
Mol Microbiol ; 111(3): 784-797, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30592095

RESUMO

RNA polymerase must surmount translocation barriers for continued transcription. In Eukarya and most Archaea, DNA-bound histone proteins represent the most common and troublesome barrier to transcription elongation. Eukaryotes encode a plethora of chromatin-remodeling complexes, histone-modification enzymes and transcription elongation factors to aid transcription through nucleosomes, while archaea seemingly lack machinery to remodel/modify histone-based chromatin and thus must rely on elongation factors to accelerate transcription through chromatin-barriers. TFS (TFIIS in Eukarya) and the Spt4-Spt5 complex are universally encoded in archaeal genomes, and here we demonstrate that both elongation factors, via different mechanisms, can accelerate transcription through archaeal histone-based chromatin. Histone proteins in Thermococcus kodakarensis are sufficiently abundant to completely wrap all genomic DNA, resulting in a consistent protein barrier to transcription elongation. TFS-enhanced cleavage of RNAs in backtracked transcription complexes reactivates stalled RNAPs and dramatically accelerates transcription through histone-barriers, while Spt4-Spt5 changes to clamp-domain dynamics play a lesser-role in stabilizing transcription. Repeated attempts to delete TFS, Spt4 and Spt5 from the T. kodakarensis genome were not successful, and the essentiality of both conserved transcription elongation factors suggests that both conserved elongation factors play important roles in transcription regulation in vivo, including mechanisms to accelerate transcription through downstream protein barriers.


Assuntos
Proteínas Arqueais/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Thermococcus/enzimologia , Elongação da Transcrição Genética , Fatores de Elongação da Transcrição/metabolismo , Proteínas Arqueais/genética , Deleção de Genes , Genes Essenciais , Thermococcus/genética , Fatores de Elongação da Transcrição/genética
8.
Proc Natl Acad Sci U S A ; 114(33): E6767-E6773, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760969

RESUMO

RNA polymerase activity is regulated by nascent RNA sequences, DNA template sequences, and conserved transcription factors. Transcription factors promoting initiation and elongation have been characterized in each domain, but transcription termination factors have been identified only in bacteria and eukarya. Here we describe euryarchaeal termination activity (Eta), the first archaeal termination factor capable of disrupting the transcription elongation complex (TEC), detail the rate of and requirements for Eta-mediated transcription termination, and describe a role for Eta in transcription termination in vivo. Eta-mediated transcription termination is energy-dependent, requires upstream DNA sequences, and disrupts TECs to release the nascent RNA to solution. Deletion of TK0566 (encoding Eta) is possible, but results in slow growth and renders cells sensitive to DNA damaging agents. Our results suggest that the mechanisms used by termination factors in archaea, eukarya, and bacteria to disrupt the TEC may be conserved, and that Eta stimulates release of stalled or arrested TECs.


Assuntos
Archaea/genética , Proteínas Arqueais/metabolismo , Fatores de Transcrição/metabolismo , Terminação da Transcrição Genética , Archaea/metabolismo , DNA Arqueal/genética , DNA Arqueal/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica em Archaea , Modelos Genéticos , Thermococcus/genética , Thermococcus/metabolismo
9.
Extremophiles ; 23(2): 229-238, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673855

RESUMO

The sole unifying feature of Archaea is the use of isoprenoid-based glycerol lipid ethers to compose cellular membranes. The branched hydrocarbon tails of archaeal lipids are synthesized via the polymerization of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), but many questions still surround the pathway(s) that result in production of IPP and DMAPP in archaeal species. Isotopic-labeling strategies argue for multiple biological routes for production of mevalonate, but biochemical and bioinformatic studies support only a linear pathway for mevalonate production. Here, we use a combination of genetic and biochemical assays to detail the production of mevalonate in the model archaeon Thermococcus kodakarensis. We demonstrate that a single, linear pathway to mevalonate biosynthesis is essential and that alternative routes of mevalonate production, if present, are not biologically sufficient to support growth in the absence of the classical mevalonate pathway resulting in IPP production from acetyl-CoA. Archaeal species provide an ideal platform for production of high-value isoprenoids in large quantities, and the results obtained provide avenues to further increase the production of mevalonate to drive isoprenoid production in archaeal hosts.


Assuntos
Ácido Mevalônico/metabolismo , Thermococcus/metabolismo , Acetilcoenzima A/metabolismo , Hemiterpenos/metabolismo , Compostos Organofosforados/metabolismo , Thermococcus/crescimento & desenvolvimento
10.
J Biol Chem ; 292(21): 8835-8845, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28373277

RESUMO

Incorporation of ribonucleotides during DNA replication has severe consequences for genome stability. Although eukaryotes possess a number of redundancies for initiating and completing repair of misincorporated ribonucleotides, archaea such as Thermococcus rely only upon RNaseH2 to initiate the pathway. Because Thermococcus DNA polymerases incorporate as many as 1,000 ribonucleotides per genome, RNaseH2 must be efficient at recognizing and nicking at embedded ribonucleotides to ensure genome integrity. Here, we show that ribonucleotides are incorporated by the hyperthermophilic archaeon Thermococcus kodakarensis both in vitro and in vivo and a robust ribonucleotide excision repair pathway is critical to keeping incorporation levels low in wild-type cells. Using pre-steady-state and steady-state kinetics experiments, we also show that archaeal RNaseH2 rapidly cleaves at embedded ribonucleotides (200-450 s-1), but exhibits an ∼1,000-fold slower turnover rate (0.06-0.17 s-1), suggesting a potential role for RNaseH2 in protecting or marking nicked sites for further processing. We found that following RNaseH2 cleavage, the combined activities of polymerase B (PolB), flap endonuclease (Fen1), and DNA ligase are required to complete ribonucleotide processing. PolB formed a ribonucleotide-containing flap by strand displacement synthesis that was cleaved by Fen1, and DNA ligase sealed the nick for complete repair. Our study reveals conservation of the overall mechanism of ribonucleotide excision repair across domains of life. The lack of redundancies in ribonucleotide repair in archaea perhaps suggests a more ancestral form of ribonucleotide excision repair compared with the eukaryotic pathway.


Assuntos
Proteínas Arqueais/metabolismo , Quebras de DNA de Cadeia Simples , Reparo do DNA/fisiologia , DNA Arqueal/metabolismo , Ribonuclease H/metabolismo , Thermococcus/metabolismo , Proteínas Arqueais/genética , DNA Ligases/genética , DNA Ligases/metabolismo , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Arqueal/genética , Ribonuclease H/genética , Thermococcus/genética
11.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352088

RESUMO

Robust genetic systems for the hyperthermophilic Thermococcales have facilitated the overexpression of native genes, enabled the addition of sequences encoding secretion signals, epitope, and affinity tags to coding regions, and aided the introduction of sequences encoding new proteins in these fast-growing fermentative heterotrophs. However, tightly controlled and easily manipulated systems facilitating regulated gene expression are limited for these hosts. Here, we describe an alternative method for regulatory control reliant on a cis-encoded functional riboswitch in the model archaeon Thermococcus kodakarensis Despite the hyperthermophilic growth temperatures, the proposed structure of the riboswitch conforms to a fluoride-responsive riboswitch encoded in many bacteria and similarly functions to regulate a component-conserved fluoride export pathway. Deleting components of the fluoride export pathway generates T. kodakarensis strains with increased fluoride sensitivity. The mechanism underlying regulated expression suggested that the riboswitch-encoding sequences could be utilized as a tunable expression cassette. When appended to a reporter gene, the riboswitch-mediated control system provides fluoride-dependent tunable regulatory potential, offering an alternative system for regulating gene expression. Riboswitch-regulated expression is thus ubiquitous in extant life and can be exploited to generate regulated expression systems for hyperthermophiles.IMPORTANCE Gene expression is controlled by a myriad of interconnected mechanisms that interpret metabolic states and environmental cues to balance cell physiology. Transcription regulation in Archaea is known to employ both typical repressors-operators and transcription activators to regulate transcription initiation in addition to the regulation afforded by chromatin structure. It was perhaps surprising that the presumed ancient mechanism of riboswitch-mediated regulation is found in Bacteria and Eukarya, but seemingly absent in Archaea We demonstrate here that a fluoride-responsive riboswitch functions to regulate a detoxification pathway in the hyperthermophilic archaeon Thermococcus kodakarensis The results obtained define a universal role for riboswitch-mediated regulation, adumbrate the presence of several riboswitch-regulated genes in Thermococcus kodakarensis, demonstrate the utility of RNA-based regulation at high temperatures, and provide a novel riboswitch-regulated expression system to employ in hyperthermophiles.


Assuntos
Proteínas Arqueais/genética , Regulação da Expressão Gênica em Archaea , Riboswitch/genética , Thermococcus/genética , Proteínas Arqueais/metabolismo , Fluoretos , Temperatura Alta , Thermococcus/metabolismo
12.
J Bacteriol ; 199(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28583949

RESUMO

The ferric uptake regulator (Fur) family of DNA-binding proteins represses and/or activates gene transcription via divalent metal ion-dependent signal sensing. The Borrelia burgdorferi Fur homologue, also known as Borrelia oxidative stress regulator (BosR), promotes spirochetal adaptation to the mammalian host by directly repressing the lipoproteins required for tick colonization and indirectly activating those required for establishing infection in the mammal. Here, we examined whether the DNA-binding activity of BosR was regulated by any of the four most prevalent transition metal ions in B. burgdorferi, Mn, Fe, Cu, and Zn. Our data indicated that in addition to a structural site occupied by Zn(II), BosR had two regulatory sites that could be occupied by Zn(II), Fe(II), or Cu(II) but not by Mn(II). While Fe(II) had no effect, Cu(II) and Zn(II) had a dose-dependent inhibitory effect on the BosR DNA-binding activity. Competition experiments indicated that Cu(II) had a higher affinity for BosR than Zn(II) or Fe(II). A BosR deficiency in B. burgdorferi resulted in a significant increase in the Cu level but no significant change in the levels of Mn, Fe, or Zn. These data suggest that Cu regulates BosR activity, and BosR in turn regulates Cu homeostasis in B. burgdorferi While this regulatory paradigm is characteristic of the Fur family, BosR is the first one shown to be responsive to Cu(II), which may be an adaptation to the potentially high level of Cu present in the Lyme disease spirochete.IMPORTANCE Transition metal ions serve an essential role in the metabolism of all living organisms. Members of the ferric uptake regulator (Fur) family play critical roles in regulating the cellular homeostasis of transition metals in diverse bacteria, and their DNA-binding activity is often regulated by coordination of the cognate divalent metal ions. To date, regulators with metal ion specificity to Fe(II), Mn(II), Zn(II), and Ni(II) have all been described. In this study, we demonstrate that BosR, the sole Fur homologue in Borrelia burgdorferi, is responsive to Cu(II) and regulates Cu homeostasis in this bacterium, which may be an adaption to potentially Cu-rich milieu in the Lyme disease spirochete. This study has expanded the repertoire of the Fur family's metal ion specificity.


Assuntos
Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Cobre/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Homeostase , DNA Bacteriano/metabolismo , Ligação Proteica
13.
J Bacteriol ; 199(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28416706

RESUMO

Many aspects of and factors required for DNA replication are conserved across all three domains of life, but there are some significant differences surrounding lagging-strand synthesis. In Archaea, a 5'-to-3' exonuclease, related to both bacterial RecJ and eukaryotic Cdc45, that associates with the replisome specifically through interactions with GINS was identified and designated GAN (for GINS-associated nuclease). Despite the presence of a well-characterized flap endonuclease (Fen1), it was hypothesized that GAN might participate in primer removal during Okazaki fragment maturation, and as a Cdc45 homologue, GAN might also be a structural component of an archaeal CMG (Cdc45, MCM, and GINS) replication complex. We demonstrate here that, individually, either Fen1 or GAN can be deleted, with no discernible effects on viability and growth. However, deletion of both Fen1 and GAN was not possible, consistent with both enzymes catalyzing the same step in primer removal from Okazaki fragments in vivo RNase HII has also been proposed to participate in primer processing during Okazaki fragment maturation. Strains with both Fen1 and RNase HII deleted grew well. GAN activity is therefore sufficient for viability in the absence of both RNase HII and Fen1, but it was not possible to construct a strain with both RNase HII and GAN deleted. Fen1 alone is therefore insufficient for viability in the absence of both RNase HII and GAN. The ability to delete GAN demonstrates that GAN is not required for the activation or stability of the archaeal MCM replicative helicase.IMPORTANCE The mechanisms used to remove primer sequences from Okazaki fragments during lagging-strand DNA replication differ in the biological domains. Bacteria use the exonuclease activity of DNA polymerase I, whereas eukaryotes and archaea encode a flap endonuclease (Fen1) that cleaves displaced primer sequences. RNase HII and the GINS-associated exonuclease GAN have also been hypothesized to assist in primer removal in Archaea Here we demonstrate that in Thermococcus kodakarensis, either Fen1 or GAN activity is sufficient for viability. Furthermore, GAN can support growth in the absence of both Fen1 and RNase HII, but Fen1 and RNase HII are required for viability in the absence of GAN.


Assuntos
Exorribonucleases/metabolismo , Endonucleases Flap/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Thermococcus/enzimologia , Exorribonucleases/genética , Endonucleases Flap/genética , Deleção de Genes , Genoma Bacteriano , Viabilidade Microbiana/genética , Thermococcus/genética , Thermococcus/metabolismo
14.
J Bacteriol ; 198(14): 1906-1917, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27137495

RESUMO

The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription.


Assuntos
Archaea/genética , Proteínas Arqueais/genética , Regulação da Expressão Gênica em Archaea , Transcrição Gênica , Archaea/metabolismo , Proteínas Arqueais/metabolismo
15.
Methods ; 86: 73-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26028597

RESUMO

Transcription factors regulate the activities of RNA polymerase (RNAP) at each stage of the transcription cycle. Many basal transcription factors with common ancestry are employed in eukaryotic and archaeal systems that directly bind to RNAP and influence intramolecular movements of RNAP and modulate DNA or RNA interactions. We describe and employ a flexible methodology to directly probe and quantify the binding of transcription factors to RNAP in vivo. We demonstrate that binding of the conserved and essential archaeal transcription factor TFE to the archaeal RNAP is directed, in part, by interactions with the RpoE subunit of RNAP. As the surfaces involved are conserved in many eukaryotic and archaeal systems, the identified TFE-RNAP interactions are likely conserved in archaeal-eukaryal systems and represent an important point of contact that can influence the efficiency of transcription initiation.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Subunidades Proteicas/química , Fatores de Transcrição/química , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/química , Plasmídeos , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Subunidades Proteicas/genética , Relação Estrutura-Atividade , Thermococcus/genética , Fatores de Transcrição/genética
16.
Nucleic Acids Res ; 42(9): 5776-89, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24728986

RESUMO

Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that associates with and influences the activity of many proteins participating in DNA metabolic processes and cell cycle progression. Previously, an uncharacterized small protein, encoded by TK0808 in the archaeon Thermococcus kodakarensis, was shown to stably interact with PCNA in vivo. Here, we show that this protein, designated Thermococcales inhibitor of PCNA (TIP), binds to PCNA in vitro and inhibits PCNA-dependent activities likely by preventing PCNA trimerization. Using hydrogen/deuterium exchange mass spectrometry and site-directed mutagenesis, the interacting regions of PCNA and TIP were identified. Most proteins bind to PCNA via a PCNA-interacting peptide (PIP) motif that interacts with the inter domain connecting loop (IDCL) on PCNA. TIP, however, lacks any known PCNA-interacting motif, suggesting a new mechanism for PCNA binding and regulation of PCNA-dependent activities, which may support the development of a new subclass of therapeutic biomolecules for inhibiting PCNA.


Assuntos
Proteínas Arqueais/química , Antígeno Nuclear de Célula em Proliferação/química , Substituição de Aminoácidos , Proteínas Arqueais/genética , DNA Polimerase II/química , Medição da Troca de Deutério , Endonucleases Flap/química , Cinética , Viabilidade Microbiana , Modelos Moleculares , Mutagênese Sítio-Dirigida , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Thermococcus/fisiologia
17.
BMC Genomics ; 15: 684, 2014 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-25127548

RESUMO

BACKGROUND: Prokaryotes have relatively small genomes, densely-packed with protein-encoding sequences. RNA sequencing has, however, revealed surprisingly complex transcriptomes and here we report the transcripts present in the model hyperthermophilic Archaeon, Thermococcus kodakarensis, under different physiological conditions. RESULTS: Sequencing cDNA libraries, generated from RNA isolated from cells under different growth and metabolic conditions has identified >2,700 sites of transcription initiation, established a genome-wide map of transcripts, and consensus sequences for transcription initiation and post-transcription regulatory elements. The primary transcription start sites (TSS) upstream of 1,254 annotated genes, plus 644 primary TSS and their promoters within genes, are identified. Most mRNAs have a 5'-untranslated region (5'-UTR) 10 to 50 nt long (median = 16 nt), but ~20% have 5'-UTRs from 50 to 300 nt long and ~14% are leaderless. Approximately 50% of mRNAs contain a consensus ribosome binding sequence. The results identify TSS for 1,018 antisense transcripts, most with sequences complementary to either the 5'- or 3'-region of a sense mRNA, and confirm the presence of transcripts from all three CRISPR loci, the RNase P and 7S RNAs, all tRNAs and rRNAs and 69 predicted snoRNAs. Two putative riboswitch RNAs were present in growing but not in stationary phase cells. The procedure used is designed to identify TSS but, assuming that the number of cDNA reads correlates with transcript abundance, the results also provide a semi-quantitative documentation of the differences in T. kodakarensis genome expression under different growth conditions and confirm previous observations of substrate-dependent specific gene expression. Many previously unanticipated small RNAs have been identified, some with relative low GC contents (≤ 50%) and sequences that do not fold readily into base-paired secondary structures, contrary to the classical expectations for non-coding RNAs in a hyperthermophile. CONCLUSION: The results identify >2,700 TSS, including almost all of the primary sites of transcription initiation upstream of annotated genes, plus many secondary sites, sites within genes and sites resulting in antisense transcripts. The T. kodakarensis genome is small (~2.1 Mbp) and tightly packed with protein-encoding genes, but the transcriptomes established also contain many non-coding RNAs and predict extensive RNA-based regulation in this model Archaeon.


Assuntos
Perfilação da Expressão Gênica , Thermococcus/genética , Regiões 5' não Traduzidas/genética , Sequência de Bases , Regiões Promotoras Genéticas/genética , RNA Antissenso/genética , Pequeno RNA não Traduzido/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica
18.
Commun Biol ; 7(1): 236, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413771

RESUMO

Many archaea encode and express histone proteins to compact their genomes. Archaeal and eukaryotic histones share a near-identical fold that permits DNA wrapping through select histone-DNA contacts to generate chromatin-structures that must be traversed by RNA polymerase (RNAP) to generate transcripts. As archaeal histones can spontaneously assemble with a single histone isoform, single-histone chromatin variants provide an idealized platform to detail the impacts of distinct histone-DNA contacts on transcription efficiencies and to detail the role of the conserved cleavage stimulatory factor, Transcription Factor S (TFS), in assisting RNAP through chromatin landscapes. We demonstrate that substitution of histone residues that modify histone-DNA contacts or the three-dimensional chromatin structure result in radically altered transcription elongation rates and pausing patterns. Chromatin-barriers slow and pause RNAP, providing regulatory potential. The modest impacts of TFS on elongation rates through chromatin landscapes is correlated with TFS-dispensability from the archaeon Thermococcus kodakarensis. Our results detail the importance of distinct chromatin structures for archaeal gene expression and provide a unique perspective on the evolution of, and regulatory strategies imposed by, eukaryotic chromatin.


Assuntos
Histonas , Thermococcus , Histonas/metabolismo , DNA Arqueal/genética , Cromatina/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
19.
J Bacteriol ; 195(10): 2322-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23504010

RESUMO

Three evolutionarily distinct families of replicative DNA polymerases, designated polymerase B (Pol B), Pol C, and Pol D, have been identified. Members of the Pol B family are present in all three domains of life, whereas Pol C exists only in Bacteria and Pol D exists only in Archaea. Pol B enzymes replicate eukaryotic chromosomal DNA, and as members of the Pol B family are present in all Archaea, it has been assumed that Pol B enzymes also replicate archaeal genomes. Here we report the construction of Thermococcus kodakarensis strains with mutations that delete or inactivate key functions of Pol B. T. kodakarensis strains lacking Pol B had no detectable loss in viability and no growth defects or changes in spontaneous mutation frequency but had increased sensitivity to UV irradiation. In contrast, we were unable to introduce mutations that inactivated either of the genes encoding the two subunits of Pol D. The results reported establish that Pol D is sufficient for viability and genome replication in T. kodakarensis and argue that Pol D rather than Pol B is likely the replicative DNA polymerase in this archaeon. The majority of Archaea contain Pol D, and, as discussed, if Pol D is the predominant replicative polymerase in Archaea, this profoundly impacts hypotheses for the origin(s), evolution, and distribution of the different DNA replication enzymes and systems now employed in the three domains of life.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Genoma Arqueal/genética , Thermococcus/enzimologia , Thermococcus/genética , DNA Arqueal/genética , DNA Polimerase Dirigida por DNA/fisiologia , Genoma Arqueal/fisiologia
20.
BMC Genomics ; 14: 391, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23758892

RESUMO

BACKGROUND: Histone wrapping of DNA into nucleosomes almost certainly evolved in the Archaea, and predates Eukaryotes. In Eukaryotes, nucleosome positioning plays a central role in regulating gene expression and is directed by primary sequence motifs that together form a nucleosome positioning code. The experiments reported were undertaken to determine if archaeal histone assembly conforms to the nucleosome positioning code. RESULTS: Eukaryotic nucleosome positioning is favored and directed by phased helical repeats of AA/TT/AT/TA and CC/GG/CG/GC dinucleotides, and disfavored by longer AT-rich oligonucleotides. Deep sequencing of genomic DNA protected from micrococcal nuclease digestion by assembly into archaeal nucleosomes has established that archaeal nucleosome assembly is also directed and positioned by these sequence motifs, both in vivo in Methanothermobacter thermautotrophicus and Thermococcus kodakarensis and in vitro in reaction mixtures containing only one purified archaeal histone and genomic DNA. Archaeal nucleosomes assembled at the same locations in vivo and in vitro, with much reduced assembly immediately upstream of open reading frames and throughout the ribosomal rDNA operons. Providing further support for a common positioning code, archaeal histones assembled into nucleosomes on eukaryotic DNA and eukaryotic histones into nucleosomes on archaeal DNA at the same locations. T. kodakarensis has two histones, designated HTkA and HTkB, and strains with either but not both histones deleted grow normally but do exhibit transcriptome differences. Comparisons of the archaeal nucleosome profiles in the intergenic regions immediately upstream of genes that exhibited increased or decreased transcription in the absence of HTkA or HTkB revealed substantial differences but no consistent pattern of changes that would correlate directly with archaeal nucleosome positioning inhibiting or stimulating transcription. CONCLUSIONS: The results obtained establish that an archaeal histone and a genome sequence together are sufficient to determine where archaeal nucleosomes preferentially assemble and where they avoid assembly. We confirm that the same nucleosome positioning code operates in Archaea as in Eukaryotes and presumably therefore evolved with the histone-fold mechanism of DNA binding and compaction early in the archaeal lineage, before the divergence of Eukaryotes.


Assuntos
Archaea/genética , DNA Arqueal/genética , Nucleossomos/genética , Motivos de Nucleotídeos/genética , Archaea/citologia , Sequência de Bases , Sequência Conservada , DNA Intergênico/genética , Evolução Molecular , Genes Arqueais/genética , Histonas/genética , Dados de Sequência Molecular , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA