Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell Microbiol ; 23(1): e13263, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32945061

RESUMO

The ability of Salmonella to survive and replicate within mammalian host cells involves the generation of a membranous compartment known as the Salmonella-containing vacuole (SCV). Salmonella employs a number of effector proteins that are injected into host cells for SCV formation using its type-3 secretion systems encoded in SPI-1 and SPI-2 (T3SS-1 and T3SS-2, respectively). Recently, we reported that S. Typhimurium requires T3SS-1 and T3SS-2 to survive in the model amoeba Dictyostelium discoideum. Despite these findings, the involved effector proteins have not been identified yet. Therefore, we evaluated the role of two major S. Typhimurium effectors SopB and SifA during D. discoideum intracellular niche formation. First, we established that S. Typhimurium resides in a vacuolar compartment within D. discoideum. Next, we isolated SCVs from amoebae infected with wild type or the ΔsopB and ΔsifA mutant strains of S. Typhimurium, and we characterised the composition of this compartment by quantitative proteomics. This comparative analysis suggests that S. Typhimurium requires SopB and SifA to modify the SCV proteome in order to generate a suitable intracellular niche in D. discoideum. Accordingly, we observed that SopB and SifA are needed for intracellular survival of S. Typhimurium in this organism. Thus, our results provide insight into the mechanisms employed by Salmonella to survive intracellularly in phagocytic amoebae.


Assuntos
Proteínas de Bactérias/metabolismo , Dictyostelium/metabolismo , Proteoma/metabolismo , Salmonella typhimurium/metabolismo , Vacúolos/metabolismo , Amoeba/metabolismo , Animais , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno , Mutação , Proteômica , Proteínas de Protozoários/metabolismo , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética
2.
Microb Pathog ; 107: 317-320, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28400130

RESUMO

Pathogenic Salmonella strains have a set of virulence factors allowing them to generate systemic infections and damage in a variety of hosts. Among these factors, bacterial proteins secreted by specialized systems are used to penetrate the host's intestinal mucosa, through the invasion and destruction of specialized epithelial M cells in the intestine. On the other hand, numerous studies have demonstrated that humans, as well as experimental animal hosts, respond to Salmonella infection by activating both innate and adaptive immune responses. Here, through live cell imaging of S. Typhimurium infection of zebrafish larvae, we showed that besides the intestinal colonization, a deformed cloacae region and a concomitant accumulation of S. Typhimurium cells was observed upon bacterial infection. The swelling led to a persistent inflammation of infected larvae, although the infection was non-lethal. The in vivo inflammation process was confirmed by the co-localization of GFP-tagged S. Typhimurium with mCherry-tagged neutrophils at 72 h post exposition. Our live-cell analyses suggest that Salmonella Typhimurium induce cloacitis-like symptoms in zebrafish larvae.


Assuntos
Larva/microbiologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/patogenicidade , Peixe-Zebra/microbiologia , Animais , Proteínas de Bactérias , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Interações Hospedeiro-Patógeno/imunologia , Imersão , Imunidade Inata , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Neutrófilos/imunologia , Salmonelose Animal/imunologia , Fatores de Virulência
3.
Biol Res ; 50(1): 5, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202086

RESUMO

BACKGROUND: Salmonella pathogenicity island (SPI)-13 is conserved in many serovars of S. enterica, including S. Enteritidis, S. Typhimurium and S. Gallinarum. However, it is absent in typhoid serovars such as S. Typhi and Paratyphi A, which carry SPI-8 at the same genomic location. Because the interaction with macrophages is a critical step in Salmonella pathogenicity, in this study we investigated the role played by SPI-13 and SPI-8 in the interaction of S. Enteritidis and S. Typhi with cultured murine (RAW264.7) and human (THP-1) macrophages. RESULTS: Our results showed that SPI-13 was required for internalization of S. Enteritidis in murine but not human macrophages. On the other hand, SPI-8 was not required for the interaction of S. Typhi with human or murine macrophages. Of note, the presence of an intact copy of SPI-13 in a S. Typhi mutant carrying a deletion of SPI-8 did not improve its ability to be internalized by, or survive in human or murine macrophages. CONCLUSIONS: Altogether, our results point out to different roles for SPI-13 and SPI-8 during Salmonella infection. While SPI-13 contributes to the interaction of S. Enteritidis with murine macrophages, SPI-8 is not required in the interaction of S. Typhi with murine or human macrophages. We hypothesized that typhoid serovars have lost SPI-13 and maintained SPI-8 to improve their fitness during another phase of human infection.


Assuntos
Ilhas Genômicas/fisiologia , Macrófagos/microbiologia , Infecções por Salmonella/microbiologia , Salmonella enteritidis/genética , Salmonella typhi/genética , Análise de Variância , Animais , Fenômenos Fisiológicos Bacterianos , Sobrevivência Celular , Células Cultivadas , Genoma Bacteriano , Ilhas Genômicas/genética , Humanos , Camundongos , Interações Microbianas/genética , Muridae , Reação em Cadeia da Polimerase , Células RAW 264.7 , Sorogrupo , Especificidade da Espécie
4.
Microbiology (Reading) ; 162(8): 1367-1378, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27260307

RESUMO

The genomic island 9 (SPI-9) from Salmonella enterica serovar Typhi (S. Typhi) carries three ORFs (STY2876, STY2877, STY2878) presenting 98 % identity with a type 1 secretory apparatus (T1SS), and a single ORF (STY2875) similar to a large RTX-like protein exhibiting repeated Ig domains. BapA, the Salmonella enterica serovar Enteritidis orthologous to S. Typhi STY2875, has been associated with biofilm formation, and is described as a virulence factor in mice. Preliminary in silico analyses revealed that S. Typhi STY2875 ORF has a 600 bp deletion compared with S. Enteritidis bapA, suggesting that S. Typhi STY2875 might be non-functional. At present, SPI-9 has not been studied in S. Typhi. We found that the genes constituting SPI-9 are arranged in an operon whose promoter was up-regulated in high osmolarity and low pH in a RpoS-dependent manner. All the proteins encoded by S. Typhi SPI-9 were located at the membrane fraction, consistent with their putative role as T1SS. Furthermore, SPI-9 contributed to adherence of S. Typhi to epithelial cells when bacteria were grown under high osmolarity or low pH. Under the test conditions, S. Typhi SPI-9 did not participate in biofilm formation. SPI-9 is functional in S. Typhi and encodes an adhesin induced under conditions normally found in the intestine, such as high osmolarity. Hence, this is an example of a locus that might be designated a pseudogene by computational approaches but not by direct biological assays.


Assuntos
Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Células Epiteliais/microbiologia , Ilhas Genômicas/genética , Salmonella typhi/genética , Salmonella typhi/patogenicidade , Fator sigma/genética , Sistemas de Secreção Tipo I/genética , Adesinas Bacterianas/genética , Biofilmes/crescimento & desenvolvimento , Células CACO-2 , Linhagem Celular Tumoral , Escherichia coli/genética , Humanos , Salmonella enteritidis/genética , Salmonella enteritidis/patogenicidade , Fatores de Virulência/genética
5.
Biochem Biophys Res Commun ; 477(4): 563-567, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27343553

RESUMO

Lipopolysaccharide (LPS) consists of three covalently linked domains: the lipid A, the core region and the O antigen (OAg), consisting of repeats of an oligosaccharide. Salmonella enterica serovar Enteritidis (S. Enteritidis) produces a LPS with two OAg preferred chain lengths: a long (L)-OAg controlled by WzzSE and a very long (VL)-OAg controlled by WzzfepE. In this work, we show that OAg produced by S. Enteritidis grown in E minimal medium also presented two preferred chain-lengths. However, a simultaneous and opposing change in the production of L-OAg and VL-OAg was observed in response to oxygen availability. Biochemical and genetics analyses indicate that this process is regulated by transcriptional factors Fnr and ArcA by means of controlling the transcription of genes encoding WzzSE and WzzfepE in response to oxygen availability. Thus, our results revealed a sophisticated regulatory mechanism involved in the adaptation of S. Enteritidis to one of the main environmental cues faced by this pathogen during infection.


Assuntos
Antígenos O/metabolismo , Oxigênio/metabolismo , Salmonella enterica/metabolismo , Eletroforese em Gel de Poliacrilamida , Genes Bacterianos , Antígenos O/química , Polimerização , Salmonella enterica/genética
6.
Vet Res ; 45: 2, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24405577

RESUMO

The type VI secretion system (T6SS) is a virulence factor for many Gram-negative bacteria. Salmonella genus harbors five phylogenetically distinct T6SS loci encoded in Salmonella Pathogenicity Islands (SPIs) SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22, which are differentially distributed among serotypes. The T6SSs encoded in SPI-6 and SPI-19 contribute to pathogenesis of serotypes Typhimurium and Gallinarum in mice and chickens, respectively. Salmonella Dublin is a pathogen restricted to cattle where it causes a systemic disease. Also, it can colonize other hosts such as chickens and mice, which can act as reservoirs of this serotype. Salmonella Dublin harbors the genes for both T6SS(SPI-6) and T6SS(SPI-19). This study has determined the contribution of T6SS(SPI-6) and T6SS(SPI-19) to host-colonization by Salmonella Dublin using avian and murine models of infection. Competitive index experiments showed that, a mutant strain lacking both T6SSs (∆T6SS(SPI-6)/∆T6SS(SPI-19)) presents a strong colonization defect in cecum of chickens, similar to the defect observed for the ∆T6SS(SPI-6) mutant, suggesting that this serotype requires a functional T6SS(SPI-6) for efficient colonization of the avian gastrointestinal tract. Colonization of mice was also defective, although to a lesser extent than in chickens. In contrast, the T6SS(SPI-19) was not necessary for colonization of either chickens or mice. Transfer of T6SS(SPI-6), but not T6SS(SPI-19), restored the ability of the double mutant to colonize both animal hosts. Our data indicate that Salmonella Dublin requires only the T6SS(SPI-6) for efficient colonization of mice and chickens, and that the T6SS(SPI-6) and T6SS(SPI-19) are not functionally redundant.


Assuntos
Sistemas de Secreção Bacterianos , Sistema Digestório/microbiologia , Salmonella enterica/fisiologia , Salmonella enterica/patogenicidade , Fatores de Virulência/genética , Animais , Galinhas , Ilhas Genômicas , Camundongos , Mutação , Salmonella enterica/genética , Baço/microbiologia , Fatores de Virulência/metabolismo
7.
Infect Immun ; 81(4): 1207-20, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23357385

RESUMO

Salmonella enterica serotype Gallinarum is the causative agent of fowl typhoid, a disease characterized by high morbidity and mortality that causes major economic losses in poultry production. We have reported that S. Gallinarum harbors a type VI secretion system (T6SS) encoded in Salmonella pathogenicity island 19 (SPI-19) that is required for efficient colonization of chicks. In the present study, we aimed to characterize the SPI-19 T6SS functionality and to investigate the mechanisms behind the phenotypes previously observed in vivo. Expression analyses revealed that SPI-19 T6SS core components are expressed and produced under in vitro bacterial growth conditions. However, secretion of the structural/secreted components Hcp1, Hcp2, and VgrG to the culture medium could not be determined, suggesting that additional signals are required for T6SS-dependent secretion of these proteins. In vitro bacterial competition assays failed to demonstrate a role for SPI-19 T6SS in interbacterial killing. In contrast, cell culture experiments with murine and avian macrophages (RAW264.7 and HD11, respectively) revealed production of a green fluorescent protein-tagged version of VgrG soon after Salmonella uptake. Furthermore, infection of RAW264.7 and HD11 macrophages with deletion mutants of SPI-19 or strains with genes encoding specific T6SS core components (clpV and vgrG) revealed that SPI-19 T6SS contributes to S. Gallinarum survival within macrophages at 20 h postuptake. SPI-19 T6SS function was not linked to Salmonella-induced cytotoxicity or cell death of infected macrophages, as has been described for other T6SS. Our data indicate that SPI-19 T6SS corresponds to a novel tool used by Salmonella to survive within host cells.


Assuntos
Sistemas de Secreção Bacterianos , Ilhas Genômicas , Macrófagos/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Viabilidade Microbiana , Salmonella enterica/patogenicidade , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Galinhas , Deleção de Genes , Proteínas de Membrana Transportadoras/genética , Camundongos , Salmonella enterica/metabolismo , Salmonella enterica/fisiologia , Fatores de Tempo , Fatores de Virulência/genética
8.
PLoS Pathog ; 7(8): e1002191, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21876672

RESUMO

The genus Salmonella contains two species, S. bongori and S. enterica. Compared to the well-studied S. enterica there is a marked lack of information regarding the genetic makeup and diversity of S. bongori. S. bongori has been found predominantly associated with cold-blooded animals, but it can infect humans. To define the phylogeny of this species, and compare it to S. enterica, we have sequenced 28 isolates representing most of the known diversity of S. bongori. This cross-species analysis allowed us to confidently differentiate ancestral functions from those acquired following speciation, which include both metabolic and virulence-associated capacities. We show that, although S. bongori inherited a basic set of Salmonella common virulence functions, it has subsequently elaborated on this in a different direction to S. enterica. It is an established feature of S. enterica evolution that the acquisition of the type III secretion systems (T3SS-1 and T3SS-2) has been followed by the sequential acquisition of genes encoding secreted targets, termed effectors proteins. We show that this is also true of S. bongori, which has acquired an array of novel effector proteins (sboA-L). All but two of these effectors have no significant S. enterica homologues and instead are highly similar to those found in enteropathogenic Escherichia coli (EPEC). Remarkably, SboH is found to be a chimeric effector protein, encoded by a fusion of the T3SS-1 effector gene sopA and a gene highly similar to the EPEC effector nleH from enteropathogenic E. coli. We demonstrate that representatives of these new effectors are translocated and that SboH, similarly to NleH, blocks intrinsic apoptotic pathways while being targeted to the mitochondria by the SopA part of the fusion. This work suggests that S. bongori has inherited the ancestral Salmonella virulence gene set, but has adapted by incorporating virulence determinants that resemble those employed by EPEC.


Assuntos
Evolução Biológica , Salmonella/genética , Animais , Escherichia coli Enteropatogênica/genética , Genes Bacterianos , Ilhas Genômicas/genética , Humanos , Filogenia , Salmonella enterica/genética , Análise de Sequência de DNA , Translocação Genética , Virulência/genética , Fatores de Virulência/genética
9.
Pol J Microbiol ; 72(2): 215-219, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314360

RESUMO

Salmonella genus harbors five Type VI Secretion System (T6SS) gene clusters. The T6SS encoded in SPI-6 (T6SSSPI-6) contributes to Salmonella Typhimurium colonization of chickens and mice, while the T6SS encoded in SPI-19 (T6SSSPI-19) of Salmonella Gallinarum contributes to chicken colonization. Interestingly, the T6SSSPI-19 of Salmonella Gallinarum complemented the defect in chicken colonization of a Salmonella Typhimurium strain that lacks the T6SSSPI-6, suggesting that both T6SSs are interchangeable. Here we show that the transfer of Salmonella Gallinarum T6SSSPI-19 complemented the defect in mice colonization of a Salmonella Typhimurium ΔT6SSSPI-6 strain, indicating that both T6SSs are functionally redundant during host colonization.


Assuntos
Galinhas , Salmonella typhimurium , Animais , Camundongos , Salmonella typhimurium/genética , Família Multigênica
10.
Front Microbiol ; 14: 1252344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664116

RESUMO

The type VI secretion system (T6SS) is a contact-dependent contractile multiprotein apparatus widely distributed in Gram-negative bacteria. These systems can deliver different effector proteins into target bacterial and/or eukaryotic cells, contributing to the environmental fitness and virulence of many bacterial pathogens. Salmonella harbors five different T6SSs encoded in different genomic islands. The T6SS encoded in Salmonella Pathogenicity Island 6 (SPI-6) contributes to Salmonella competition with the host microbiota and its interaction with infected host cells. Despite its relevance, information regarding the total number of effector proteins encoded within SPI-6 and its distribution among different Salmonella enterica serotypes is limited. In this work, we performed bioinformatic and comparative genomics analyses of the SPI-6 T6SS gene cluster to expand our knowledge regarding the T6SS effector repertoire and the global distribution of these effectors in Salmonella. The analysis of a curated dataset of 60 Salmonella enterica genomes from the Secret6 database revealed the presence of 23 new putative T6SS effector/immunity protein (E/I) modules. These effectors were concentrated in the variable regions 1 to 3 (VR1-3) of the SPI-6 T6SS gene cluster. VR1-2 were enriched in candidate effectors with predicted peptidoglycan hydrolase activity, while VR3 was enriched in candidate effectors of the Rhs family with C-terminal extensions with predicted DNase, RNase, deaminase, or ADP-ribosyltransferase activity. A global analysis of known and candidate effector proteins in Salmonella enterica genomes from the NCBI database revealed that T6SS effector proteins are differentially distributed among Salmonella serotypes. While some effectors are present in over 200 serotypes, others are found in less than a dozen. A hierarchical clustering analysis identified Salmonella serotypes with distinct profiles of T6SS effectors and candidate effectors, highlighting the diversity of T6SS effector repertoires in Salmonella enterica. The existence of different repertoires of effector proteins suggests that different effector protein combinations may have a differential impact on the environmental fitness and pathogenic potential of these strains.

11.
Front Microbiol ; 14: 1236458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029095

RESUMO

Excisable genomic islands (EGIs) are horizontally acquired genetic elements that harbor an array of genes with diverse functions. ROD21 is an EGI found integrated in the chromosome of Salmonella enterica serovar Enteritidis (Salmonella ser. Enteritidis). While this island is known to be involved in the capacity of Salmonella ser. Enteritidis to cross the epithelial barrier and colonize sterile organs, the role of most ROD21 genes remains unknown, and thus, the identification of their function is fundamental to understanding the impact of this EGI on bacterium pathogenicity. Therefore, in this study, we used a bioinformatical approach to evaluate the function of ROD21-encoded genes and delve into the characterization of SEN1990, a gene encoding a putative DNA-binding protein. We characterized the predicted structure of SEN1990, finding that this protein contains a three-stranded winged helix-turn-helix (wHTH) DNA-binding domain. Additionally, we identified homologs of SEN1990 among other members of the EARL EGIs. Furthermore, we deleted SEN1990 in Salmonella ser. Enteritidis, finding no differences in the replication or maintenance of the excised ROD21, contrary to what the previous Refseq annotation of the protein suggests. High-throughput RNA sequencing was carried out to evaluate the effect of the absence of SEN1990 on the bacterium's global transcription. We found a downregulated expression of oafB, an SPI-17-encoded acetyltransferase involved in O-antigen modification, which was restored when the deletion mutant was complemented ectopically. Additionally, we found that strains lacking SEN1990 had a reduced capacity to colonize sterile organs in mice. Our findings suggest that SEN1990 encodes a wHTH domain-containing protein that modulates the transcription of oafB from the SPI-17, implying a crosstalk between these pathogenicity islands and a possible new role of ROD21 in the pathogenesis of Salmonella ser. Enteritidis.

12.
Infect Immun ; 80(2): 839-49, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22083712

RESUMO

Salmonella enterica serovar Enteritidis causes a systemic, typhoid-like infection in newly hatched poultry and mice. In the present study, a library of 54,000 transposon mutants of S. Enteritidis phage type 4 (PT4) strain P125109 was screened for mutants deficient in the in vivo colonization of the BALB/c mouse model using a microarray-based negative-selection screening. Mutants in genes known to contribute to systemic infection (e.g., Salmonella pathogenicity island 2 [SPI-2], aro, rfa, rfb, phoP, and phoQ) and enteric infection (e.g., SPI-1 and SPI-5) in this and other Salmonella serovars displayed colonization defects in our assay. In addition, a strong attenuation was observed for mutants in genes and genomic islands that are not present in S. Typhimurium or in most other Salmonella serovars. These genes include a type I restriction/modification system (SEN4290 to SEN4292), the peg fimbrial operon (SEN2144A to SEN2145B), a putative pathogenicity island (SEN1970 to SEN1999), and a type VI secretion system remnant SEN1001, encoding a hypothetical protein containing a lysin motif (LysM) domain associated with peptidoglycan binding. Proliferation defects for mutants in these individual genes and in exemplar genes for each of these clusters were confirmed in competitive infections with wild-type S. Enteritidis. A ΔSEN1001 mutant was defective for survival within RAW264.7 murine macrophages in vitro. Complementation assays directly linked the SEN1001 gene to phenotypes observed in vivo and in vitro. The genes identified here may perform novel virulence functions not characterized in previous Salmonella models.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Salmonelose Animal/microbiologia , Salmonella enteritidis/genética , Salmonella enteritidis/fisiologia , Salmonella typhimurium/genética , Salmonella typhimurium/fisiologia , Animais , Linhagem Celular , Clonagem Molecular , Genes Bacterianos , Fígado/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Salmonella enteritidis/patogenicidade , Baço/microbiologia , Virulência
13.
Front Microbiol ; 13: 811932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222335

RESUMO

The Type VI Secretion System (T6SS) is a multiprotein device that has emerged as an important fitness and virulence factor for many Gram-negative bacteria through the injection of effector proteins into prokaryotic or eukaryotic cells via a contractile mechanism. While some effector proteins specifically target bacterial or eukaryotic cells, others can target both types of cells (trans-kingdom effectors). In Salmonella, five T6SS gene clusters have been identified within pathogenicity islands SPI-6, SPI-19, SPI-20, SPI-21, and SPI-22, which are differentially distributed among serotypes. Salmonella enterica serotype Dublin (S. Dublin) is a cattle-adapted pathogen that harbors both T6SSSPI-6 and T6SSSPI-19. Interestingly, while both systems have been linked to virulence and host colonization in S. Dublin, an antibacterial activity has not been detected for T6SSSPI-6 in this serotype. In addition, there is limited information regarding the repertoire of effector proteins encoded within T6SSSPI-6 and T6SSSPI-19 gene clusters in S. Dublin. In the present study, we demonstrate that T6SSSPI-6 and T6SSSPI-19 of S. Dublin CT_02021853 contribute to interbacterial competition. Bioinformatic and comparative genomic analyses allowed us to identify genes encoding three candidate antibacterial effectors located within SPI-6 and two candidate effectors located within SPI-19. Each antibacterial effector gene is located upstream of a gene encoding a hypothetic immunity protein, thus conforming an effector/immunity (E/I) module. Of note, the genes encoding these effectors and immunity proteins are widely distributed in Salmonella genomes, suggesting a relevant role in interbacterial competition and virulence. Finally, we demonstrate that E/I modules SED_RS01930/SED_RS01935 (encoded in SPI-6), SED_RS06235/SED_RS06230, and SED_RS06335/SED_RS06340 (both encoded in SPI-19) contribute to interbacterial competition in S. Dublin CT_02021853.

14.
Sci Rep ; 12(1): 2435, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165310

RESUMO

Genomic islands (GIs) are horizontally transferred elements that shape bacterial genomes and contributes to the adaptation to different environments. Some GIs encode an integrase and a recombination directionality factor (RDF), which are the molecular GI-encoded machinery that promotes the island excision from the chromosome, the first step for the spread of GIs by horizontal transfer. Although less studied, this process can also play a role in the virulence of bacterial pathogens. While the excision of GIs is thought to be similar to that observed in bacteriophages, this mechanism has been only studied in a few families of islands. Here, we aimed to gain a better understanding of the factors involved in the excision of ROD21 a pathogenicity island of the food-borne pathogen Salmonella enterica serovar Enteritidis and the most studied member of the recently described Enterobacteriaceae-associated ROD21-like family of GIs. Using bioinformatic and experimental approaches, we characterized the conserved gene SEN1998, showing that it encodes a protein with the features of an RDF that binds to the regulatory regions involved in the excision of ROD21. While deletion or overexpression of SEN1998 did not alter the expression of the integrase-encoding gene SEN1970, a slight but significant trend was observed in the excision of the island. Surprisingly, we found that the expression of both genes, SEN1998 and SEN1970, were negatively correlated to the excision of ROD21 which showed a growth phase-dependent pattern. Our findings contribute to the growing body of knowledge regarding the excision of GIs, providing insights about ROD21 and the recently described EARL family of genomic islands.


Assuntos
Biologia Computacional/métodos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genes Bacterianos , Ilhas Genômicas/genética , Salmonella enteritidis/genética , Transdução de Sinais/genética , Sequência de Aminoácidos , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Integrases/genética , Integrases/metabolismo , Microrganismos Geneticamente Modificados , Mutação , Filogenia , Ligação Proteica , Salmonella enteritidis/metabolismo , Salmonella enteritidis/patogenicidade , Virulência/genética
15.
PLoS Pathog ; 5(7): e1000477, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19578432

RESUMO

Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS).


Assuntos
Infecções por Salmonella/microbiologia , Salmonella enterica/genética , Deleção de Sequência , Animais , Ceco/microbiologia , Genoma Bacteriano , Injeções Intraperitoneais , Fígado/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Bacteriano , Salmonella enterica/patogenicidade , Seleção Genética , Análise de Sequência de DNA , Baço/microbiologia
16.
Microorganisms ; 9(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668764

RESUMO

The type III secretion systems (T3SS) encoded in pathogenicity islands SPI-1 and SPI-2 are key virulence factors of Salmonella. These systems translocate proteins known as effectors into eukaryotic cells during infection. To characterize the functionality of T3SS effectors, gene fusions to the CyaA' reporter of Bordetella pertussis are often used. CyaA' is a calmodulin-dependent adenylate cyclase that is only active within eukaryotic cells. Thus, the translocation of an effector fused to CyaA' can be evaluated by measuring cAMP levels in infected cells. Here, we report the construction of plasmids pCyaA'-Kan and pCyaA'-Cam, which contain the ORF encoding CyaA' adjacent to a cassette that confers resistance to kanamycin or chloramphenicol, respectively, flanked by Flp recombinase target (FRT) sites. A PCR product from pCyaA'-Kan or pCyaA'-Cam containing these genetic elements can be introduced into the bacterial chromosome to generate gene fusions by homologous recombination using the Red recombination system from bacteriophage λ. Subsequently, the resistance cassette can be removed by recombination between the FRT sites using the Flp recombinase. As a proof of concept, the plasmids pCyaA'-Kan and pCyaA'-Cam were used to generate unmarked chromosomal fusions of 10 T3SS effectors to CyaA' in S. Typhimurium. Each fusion protein was detected by Western blot using an anti-CyaA' monoclonal antibody when the corresponding mutant strain was grown under conditions that induce the expression of the native gene. In addition, T3SS-1-dependent secretion of fusion protein SipA-CyaA' during in vitro growth was verified by Western blot analysis of culture supernatants. Finally, efficient translocation of SipA-CyaA' into HeLa cells was evidenced by increased intracellular cAMP levels at different times of infection. Therefore, the plasmids pCyaA'-Kan and pCyaA'-Cam can be used to generate unmarked chromosomal cyaA' translational fusion to study regulated expression, secretion and translocation of Salmonella T3SS effectors into eukaryotic cells.

17.
J Bacteriol ; 192(8): 2246-54, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20172996

RESUMO

Salmonella enterica serovar Enteritidis has emerged as a major health problem worldwide in the last few decades. DNA loci unique to S. Enteritidis can provide markers for detection of this pathogen and may reveal pathogenic mechanisms restricted to this serovar. An in silico comparison of 16 Salmonella genomic sequences revealed the presence of an approximately 12.5-kb genomic island (GEI) specific to the sequenced S. Enteritidis strain NCTC13349. The GEI is inserted at the 5' end of gene ydaO (SEN1377), is flanked by 308-bp imperfect direct repeats (attL and attR), and includes 21 open reading frames (SEN1378 to SEN1398), encoding primarily phage-related proteins. Accordingly, this GEI has been annotated as the defective prophage SE14 in the genome of strain NCTC13349. The genetic structure and location of phiSE14 are conserved in 99 of 103 wild-type strains of S. Enteritidis studied here, including reference strains NCTC13349 and LK5. Notably, an extrachromosomal circular form of phiSE14 was detected in every strain carrying this island. The presence of attP sites in the circular forms detected in NCTC13349 and LK5 was confirmed. In addition, we observed spontaneous loss of a tetRA-tagged version of phiSE14, leaving an empty attB site in the genome of strain NCTC13349. Collectively, these results demonstrate that phiSE14 is an unstable genetic element that undergoes spontaneous excision under standard growth conditions. An internal fragment of phiSE14 designated Sdf I has been used as a serovar-specific genetic marker in PCR-based detection systems and as a tool to determine S. Enteritidis levels in experimental infections. The instability of this region may require a reassessment of its suitability for such applications.


Assuntos
Prófagos/genética , Salmonella enteritidis/genética , Salmonella enteritidis/patogenicidade , Animais , DNA Bacteriano/genética , Feminino , Ilhas Genômicas/genética , Camundongos , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase , Sequências Repetitivas de Ácido Nucleico/genética , Virulência/genética
19.
BMC Genomics ; 10: 354, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19653904

RESUMO

BACKGROUND: The recently described Type VI Secretion System (T6SS) represents a new paradigm of protein secretion in bacteria. A number of bioinformatic studies have been conducted to identify T6SS gene clusters in the available bacterial genome sequences. According to these studies, Salmonella harbors a unique T6SS encoded in the Salmonella Pathogenicity Island 6 (SPI-6). Since these studies only considered few Salmonella genomes, the present work aimed to identify novel T6SS loci by in silico analysis of every genome sequence of Salmonella available. RESULTS: The analysis of sequencing data from 44 completed or in progress Salmonella genome projects allowed the identification of 3 novel T6SS loci. These clusters are located in differentially-distributed genomic islands we designated SPI-19, SPI-20 and SPI-21, respectively. SPI-19 was identified in a subset of S. enterica serotypes including Dublin, Weltevreden, Agona, Gallinarum and Enteritidis. In the later, an internal deletion eliminated most of the island. On the other hand, SPI-20 and SPI-21 were restricted to S. enterica subspecies arizonae (IIIa) serotype 62:z4,z23:-. Remarkably, SPI-21 encodes a VgrG protein containing a C-terminal extension similar to S-type pyocins of Pseudomonas aeruginosa. This is not only the first evolved VgrG described in Salmonella, but also the first evolved VgrG including a pyocin domain described so far in the literature. In addition, the data indicate that SPI-6 T6SS is widely distributed in S. enterica and absent in serotypes Enteritidis, Gallinarum, Agona, Javiana, Paratyphi B, Virchow, IIIa 62:z4,z23:- and IIIb 61:1,v:1,5,(7). Interestingly, while some serotypes harbor multiple T6SS (Dublin, Weltvreden and IIIa 62:z4,z23:-) others do not encode for any (Enteritidis, Paratyphi B, Javiana, Virchow and IIIb 61:1,v:1,5,(7)). Comparative and phylogenetic analyses indicate that the 4 T6SS loci in Salmonella have a distinct evolutionary history. Finally, we identified an orphan Hcp-like protein containing the Hcp/COG3157 domain linked to a C-terminal extension. We propose to designate this and related proteins as "evolved Hcps". CONCLUSION: Altogether, our data suggest that (i) the Salmonella T6SS loci were acquired by independent lateral transfer events and (ii) evolved to contribute in the adaptation of the serotypes to different lifestyles and environments, including animal hosts. Notably, the presence of an evolved VgrG protein related to pyocins suggests a novel role for T6SS in bacterial killing. Future studies on the roles of the identified T6SS loci will expand our knowledge on Salmonella pathogenesis and host specificity.


Assuntos
Hibridização Genômica Comparativa , Evolução Molecular , Genoma Bacteriano , Família Multigênica , Salmonella/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Ilhas Genômicas , Dados de Sequência Molecular , Filogenia , Salmonella/classificação , Análise de Sequência de DNA
20.
Mol Microbiol ; 70(5): 1105-19, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18826410

RESUMO

Salmonella enterica subspecies I serotypes are responsible for the vast majority of salmonellosis in mammals and birds, yet only a few factors specific to this group that allow them to persist in this niche have been identified. We show that STM0557, a S. enterica subspecies I-specific gene encoding an inner membrane protein, is critical for faecal shedding and intestinal persistence of S. enterica serotype Typhimurium ATCC14028 in Salmonella-resistant mice, but mutations in this gene do not diminish short-term intestinal colonization or invasion of cultured epithelial cells. STM0557 and two neighbouring genes, located on a pathogenicity island termed SPI-16, resemble genes of the gtrA,B, gtr(type) cluster in seroconverting bacteriophages. In general, the gtr genes encode proteins responsible for serotype conversion of the infected bacterium by addition glucose residues to repeating O-antigen subunits of lipopolysaccharide (LPS). In lysogenized Shigella, such modifications have been previously shown to be constitutively expressed and to facilitate invasion of host cells. We show that serotype Typhimurium gtr orthologues, STM0557-0559, are responsible for 'form variation' or glucosylation of the O12 antigen galactose (4 position) to generate the 12-2 variant. Form variation in Typhimurium is not constitutive, but occurred upon exposure and during intracellular growth of serotype Typhimurium in J774 macrophages. Our data suggest that the 12-2 antigen is a S. enterica subspecies I-specific LPS modification that enhances long-term intestinal colonization, and is in contrast to the role of O-antigen variation described for Shigella.


Assuntos
Intestinos/microbiologia , Antígenos O/metabolismo , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Animais , Células CACO-2 , Clonagem Molecular , DNA Bacteriano/genética , Deleção de Genes , Genes Bacterianos , Ilhas Genômicas , Humanos , Macrófagos/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Mutação , Antígenos O/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Especificidade da Espécie , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA