Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 450, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741146

RESUMO

BACKGROUND: Estetrol (E4) is a natural estrogen produced by the fetal liver during pregnancy. Due to its favorable safety profile, E4 was recently approved as estrogenic component of a new combined oral contraceptive. E4 is a selective ligand of estrogen receptor (ER)α and ERß, but its binding to the G Protein-Coupled Estrogen Receptor (GPER) has not been described to date. Therefore, we aimed to explore E4 action in GPER-positive Triple-Negative Breast Cancer (TNBC) cells. METHODS: The potential interaction between E4 and GPER was investigated by molecular modeling and binding assays. The whole transcriptomic modulation triggered by E4 in TNBC cells via GPER was explored through high-throughput RNA sequencing analyses. Gene and protein expression evaluations as well as migration and invasion assays allowed us to explore the involvement of the GPER-mediated induction of the plasminogen activator inhibitor type 2 (SERPINB2) in the biological responses triggered by E4 in TNBC cells. Furthermore, bioinformatics analysis was aimed at recognizing the biological significance of SERPINB2 in ER-negative breast cancer patients. RESULTS: After the molecular characterization of the E4 binding capacity to GPER, RNA-seq analysis revealed that the plasminogen activator inhibitor type 2 (SERPINB2) is one of the most up-regulated genes by E4 in a GPER-dependent manner. Worthy, we demonstrated that the GPER-mediated increase of SERPINB2 is engaged in the anti-migratory and anti-invasive effects elicited by E4 in TNBC cells. In accordance with these findings, a correlation between SERPINB2 levels and a good clinical outcome was found in ER-negative breast cancer patients. CONCLUSIONS: Overall, our results provide new insights into the mechanisms through which E4 can halt migratory and invasive features of TNBC cells.


Assuntos
Movimento Celular , Estetrol , Regulação Neoplásica da Expressão Gênica , Inibidor 2 de Ativador de Plasminogênio , Receptores Acoplados a Proteínas G , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Estetrol/farmacologia , Estetrol/metabolismo , Invasividade Neoplásica , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Ligação Proteica/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética
2.
J Transl Med ; 20(1): 263, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672854

RESUMO

BACKGROUND: Metabolic disorders are associated with increased incidence, aggressive phenotype and poor outcome of breast cancer (BC) patients. For instance, hyperinsulinemia is an independent risk factor for BC and the insulin/insulin receptor (IR) axis is involved in BC growth and metastasis. Of note, the anti-diabetic metformin may be considered in comprehensive therapeutic approaches in BC on the basis of its antiproliferative effects obtained in diverse pre-clinical and clinical studies. METHODS: Bioinformatics analysis were performed using the information provided by The Invasive Breast Cancer Cohort of The Cancer Genome Atlas (TCGA) project. The naturally immortalized BC cell line, named BCAHC-1, as well as cancer-associated fibroblasts (CAFs) derived from BC patients were used as model systems. In order to identify further mechanisms that characterize the anticancer action of metformin in BC, we performed gene expression and promoter studies as well as western blotting experiments. Moreover, cell cycle analysis, colony and spheroid formation, actin cytoskeleton reorganization, cell migration and matrigel drops evasion assays were carried out to provide novel insights on the anticancer properties of metformin. RESULTS: We first assessed that elevated expression and activation of IR correlate with a worse prognostic outcome in estrogen receptor (ER)-positive BC. Thereafter, we established that metformin inhibits the insulin/IR-mediated activation of transduction pathways, gene changes and proliferative responses in BCAHC-1 cells. Then, we found that metformin interferes with the insulin-induced expression of the metastatic gene CXC chemokine receptor 4 (CXCR4), which we found to be associated with poor disease-free survival in BC patients exhibiting high levels of IR. Next, we ascertained that metformin prevents a motile phenotype of BCAHC-1 cells triggered by the paracrine liaison between tumor cells and CAFs upon insulin activated CXCL12/CXCR4 axis. CONCLUSIONS: Our findings provide novel mechanistic insights regarding the anti-proliferative and anti-migratory effects of metformin in both BC cells and important components of the tumor microenvironment like CAFs. Further investigations are warranted to corroborate the anticancer action of metformin on the tumor mass toward the assessment of more comprehensive strategies halting BC progression, in particular in patients exhibiting metabolic disorders and altered insulin/IR functions.


Assuntos
Neoplasias da Mama , Metformina , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Insulina/farmacologia , Insulina/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Receptores CXCR4/metabolismo , Transdução de Sinais , Microambiente Tumoral
3.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946884

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive breast tumor subtype characterized by poor clinical outcome. In recent years, numerous advancements have been made to better understand the biological landscape of TNBC, though appropriate targets still remain to be determined. In the present study, we have determined that the expression levels of FGF2 and S100A4 are higher in TNBC with respect to non-TNBC patients when analyzing "The Invasive Breast Cancer Cohort of The Cancer Genome Atlas" (TCGA) dataset. In addition, we have found that the gene expression of FGF2 is positively correlated with S100A4 in TNBC samples. Performing quantitative PCR, Western blot, CRISPR/Cas9 genome editing, promoter studies, immunofluorescence analysis, subcellular fractionation studies, and ChIP assays, we have also demonstrated that FGF2 induces in TNBC cells the upregulation and secretion of S100A4 via FGFR1, along with the ERK1/2-AKT-c-Rel transduction signaling. Using conditioned medium from TNBC cells stimulated with FGF2, we have also ascertained that the paracrine activation of the S100A4/RAGE pathway triggers angiogenic effects in vascular endothelial cells (HUVECs) and promotes the migration of cancer-associated fibroblasts (CAFs). Collectively, our data provide novel insights into the action of the FGF2/FGFR1 axis through S100A4 toward stimulatory effects elicited in TNBC cells.


Assuntos
Fator 2 de Crescimento de Fibroblastos/fisiologia , Proteínas de Neoplasias/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/fisiologia , Proteína A4 de Ligação a Cálcio da Família S100/fisiologia , Transdução de Sinais/fisiologia , Neoplasias de Mama Triplo Negativas/fisiopatologia , Antígenos de Neoplasias/fisiologia , Movimento Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Neovascularização Patológica/fisiopatologia , Comunicação Parácrina , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-rel/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/irrigação sanguínea , Células Tumorais Cultivadas
4.
Mol Carcinog ; 56(2): 580-593, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27341075

RESUMO

Zinc (Zn) is an essential trace mineral that contributes to the regulation of several cellular functions; however, it may be also implicated in the progression of breast cancer through different mechanisms. It has been largely reported that the classical estrogen receptor (ER), as well as the G protein estrogen receptor (GPER, previously known as GPR30) can exert a main role in the development of breast tumors. In the present study, we demonstrate that zinc chloride (ZnCl2 ) involves GPER in the activation of insulin-like growth factor receptor I (IGF-IR)/epidermal growth factor receptor (EGFR)-mediated signaling, which in turn triggers downstream pathways like ERK and AKT in breast cancer cells, and main components of the tumor microenvironment namely cancer-associated fibroblasts (CAFs). Further corroborating these findings, ZnCl2 stimulates a functional crosstalk of GPER with IGF-IR and EGFR toward the transcription of diverse GPER target genes. Then, we show that GPER contributes to the stimulatory effects induced by ZnCl2 on cell-cycle progression, proliferation, and migration of breast cancer cells as well as migration of CAFs. Together, our data provide novel insights into the molecular mechanisms through which zinc may exert stimulatory effects in breast cancer cells and CAFs toward tumor progression. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/patologia , Cloretos/metabolismo , Receptores ErbB/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Somatomedina/metabolismo , Transdução de Sinais , Compostos de Zinco/metabolismo , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Humanos
5.
J Biol Chem ; 287(52): 43234-45, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23135268

RESUMO

Activation of lipid metabolism is an early event in carcinogenesis and a central hallmark of many tumors. Fatty acid synthase (FASN) is a key lipogenic enzyme catalyzing the terminal steps in the de novo biogenesis of fatty acids. In cancer cells, FASN may act as a metabolic oncogene, given that it confers growth and survival advantages to these cells, whereas its inhibition effectively and selectively kills tumor cells. Hormones such as estrogens and growth factors contribute to the transcriptional regulation of FASN expression also through the activation of downstream signaling and a cross-talk among diverse transduction pathways. In this study, we demonstrate for the first time that 17ß-estradiol (E2) and the selective GPER ligand G-1 regulate FASN expression and activity through the GPER-mediated signaling, which involved the EGF receptor/ERK/c-Fos/AP1 transduction pathway, as ascertained by using specific pharmacological inhibitors, performing gene-silencing experiments and ChIP assays in breast SkBr3, colorectal LoVo, hepatocarcinoma HepG2 cancer cells, and breast cancer-associated fibroblasts. In addition, the proliferative effects induced by E2 and G-1 in these cells involved FASN as the inhibitor of its activity, named cerulenin, abolished the growth response to both ligands. Our data suggest that GPER may be included among the transduction mediators involved by estrogens in regulating FASN expression and activity in cancer cells and cancer-associated fibroblasts that strongly contribute to cancer progression.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Ácido Graxo Sintase Tipo I/biossíntese , Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Cerulenina/farmacologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Inibidores da Síntese de Ácidos Graxos/farmacologia , Feminino , Fibroblastos/patologia , Células Hep G2 , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
6.
Breast Cancer Res ; 15(4): R64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23947803

RESUMO

INTRODUCTION: Carcinoma-associated fibroblasts (CAFs) play a pivotal role in cancer progression by contributing to invasion, metastasis and angiogenesis. Solid tumors possess a unique microenvironment characterized by local hypoxia, which induces gene expression changes and biological features leading to poor outcomes. Hypoxia Inducible Factor 1 (HIF-1) is the main transcription factor that mediates the cell response to hypoxia through different mechanisms that include the regulation of genes strongly associated with cancer aggressiveness. Among the HIF-1 target genes, the G-protein estrogen receptor (GPER) exerts a stimulatory role in diverse types of cancer cells and in CAFs. METHODS: We evaluated the regulation and function of the key angiogenic mediator vascular endothelial growth factor (VEGF) in CAFs exposed to hypoxia. Gene expression studies, Western blotting analysis and immunofluorescence experiments were performed in CAFs and breast cancer cells in the presence of cobalt chloride (CoCl2) or cultured under low oxygen tension (2% O2), in order to analyze the involvement of the HIF-1α/GPER signaling in the biological responses to hypoxia. We also explored the role of the HIF-1α/GPER transduction pathway in functional assays like tube formation in human umbilical vein endothelial cells (HUVECs) and cell migration in CAFs. RESULTS: We first determined that hypoxia induces the expression of HIF-1α and GPER in CAFs, then we ascertained that the HIF-1α/GPER signaling is involved in the regulation of VEGF expression in breast cancer cells and in CAFs exposed to hypoxia. We also assessed by ChIP assay that HIF-1α and GPER are both recruited to the VEGF promoter sequence and required for VEGF promoter stimulation upon hypoxic condition. As a biological counterpart of these findings, conditioned medium from hypoxic CAFs promoted tube formation in HUVECs in a HIF-1α/GPER dependent manner. The functional cooperation between HIF-1α and GPER in CAFs was also evidenced in the hypoxia-induced cell migration, which involved a further target of the HIF-1α/GPER signaling like connective tissue growth factor (CTGF). CONCLUSIONS: The present results provide novel insight into the role elicited by the HIF-1α/GPER transduction pathway in CAFs towards the hypoxia-dependent tumor angiogenesis. Our findings further extend the molecular mechanisms through which the tumor microenvironment may contribute to cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Fibroblastos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia
7.
Sci Rep ; 13(1): 1326, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693877

RESUMO

The synthetic peptide ERα17p (sequence: PLMIKRSKKNSLALSLT), which corresponds to the 295-311 region of the human estrogen receptor α (ERα), induces apoptosis in breast cancer cells. In mice and at low doses, it promotes not only the decrease of the size of xenografted triple-negative human breast tumors, but also anti-inflammatory and anti-nociceptive effects. Recently, we have shown that these effects were due to its interaction with the seven-transmembrane G protein-coupled estrogen receptor GPER. Following modeling studies, the C-terminus of this peptide (sequence: NSLALSLT) remains compacted at the entrance of the GPER ligand-binding pocket, whereas its N-terminus (sequence: PLMI) engulfs in the depth of the same pocket. Thus, we have hypothesized that the PLMI motif could support the pharmacological actions of ERα17p. Here, we show that the PLMI peptide is, indeed, responsible for the GPER-dependent antiproliferative and anti-nociceptive effects of ERα17p. By using different biophysical approaches, we demonstrate that the NSLALSLT part of ERα17p is responsible for aggregation. Overall, the tetrapeptide PLMI, which supports the action of the parent peptide ERα17p, should be considered as a hit for the synthesis of new GPER modulators with dual antiproliferative and anti-nociceptive actions. This study highlights also the interest to modulate GPER for the control of pain.


Assuntos
Receptor alfa de Estrogênio , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Peptídeos , Receptores Acoplados a Proteínas G , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
8.
Cell Death Discov ; 9(1): 353, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37749101

RESUMO

The G protein-coupled estrogen receptor (GPER) mediates estrogen action in different pathophysiological conditions, including cancer. GPER expression and signaling have been found to join in the progression of triple-negative breast cancer (TNBC), even though controversial data have been reported. In present study, we aimed at providing new mechanistic and biological discoveries knocking out (KO) GPER expression by CRISPR/Cas9 technology in MDA-MB-231 TNBC cells. GPER KO whole transcriptome respect to wild type (WT) MDA-MB-231 cells was determined through total RNA sequencing (RNA-Seq) and gene ontology (GO) enrichment analysis. We ascertained that anti-proliferative and pro-apoptotic gene signatures characterize GPER KO MDA-MB-231 cells. Thereafter, we determined that these cells exhibit a reduced proliferative, clonogenic and self-renewal potential along with an increased mitochondria-dependent apoptosis phenotype. In addition, we recognized that decreased cAMP levels trigger the JNK/c-Jun/p53/Noxa axis, which in turn orchestrates the pro-apoptotic effects observed in GPER KO cells. In accordance with these data, survival analyses in TNBC patients of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset indicated that high Noxa expression correlates with improved outcomes in TNBC patients. Furthermore, we demonstrated that GPER KO in TNBC cells impairs the expression and secretion of the well-acknowledged GPER target gene named CTGF, thus resulting in the inhibition of migratory effects in cancer-associated fibroblasts (CAFs). Overall, the present study provides novel mechanistic and biological insights on GPER KO in TNBC cells suggesting that GPER may be considered as a valuable target in comprehensive therapeutic approaches halting TNBC progression.

9.
Breast Cancer Res ; 14(1): R12, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22251451

RESUMO

INTRODUCTION: The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERß, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. METHODS: Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. RESULTS: MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. CONCLUSIONS: Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at the beginning and/or during tumor progression. Hence, the simultaneous inhibition of both ERα and GPER may guarantee major therapeutic benefits in respect to the use of a selective estrogen receptor antagonist.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/antagonistas & inibidores , Indóis/farmacologia , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Receptores de Estrogênio/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Motivos de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Estradiol/farmacologia , Estradiol/fisiologia , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Fosforilação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptor Cross-Talk , Transdução de Sinais , Ativação Transcricional/efeitos dos fármacos
10.
Cells ; 11(15)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35954247

RESUMO

Advanced glycation end products (AGEs) and the cognate receptor, named RAGE, are involved in metabolic disorders characterized by hyperglycemia, type 2 diabetes mellitus (T2DM) and obesity. Moreover, the AGEs/RAGE transduction pathway prompts a dysfunctional interaction between breast cancer cells and tumor stroma toward the acquisition of malignant features. However, the action of the AGEs/RAGE axis in the main players of the tumor microenvironment, named breast cancer-associated fibroblasts (CAFs), remains to be fully explored. In the present study, by chemokine array, we first assessed that interleukin-8 (IL-8) is the most up-regulated pro-inflammatory chemokine upon AGEs/RAGE activation in primary CAFs, obtained from breast tumors. Thereafter, we ascertained that the AGEs/RAGE signaling promotes a network cascade in CAFs, leading to the c-Fos-dependent regulation of IL-8. Next, using a conditioned medium from AGEs-exposed CAFs, we determined that IL-8/CXCR1/2 paracrine activation induces the acquisition of migratory and invasive features in MDA-MB-231 breast cancer cells. Altogether, our data provide new insights on the involvement of IL-8 in the AGEs/RAGE transduction pathway among the intricate connections linking breast cancer cells to the surrounding stroma. Hence, our findings may pave the way for further investigations to define the role of IL-8 as useful target for the better management of breast cancer patients exhibiting metabolic disorders.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Diabetes Mellitus Tipo 2 , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Interleucina-8/metabolismo , Transdução de Sinais , Microambiente Tumoral
11.
Cancers (Basel) ; 12(10)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081025

RESUMO

One of the major challenges in the treatment of breast cancer is the heterogeneous nature of the disease. With multiple subtypes of breast cancer identified, there is an unmet clinical need for the development of therapies particularly for the less tractable subtypes. Several transduction mechanisms are involved in the progression of breast cancer, therefore making the assessment of the molecular landscape that characterizes each patient intricate. Over the last decade, numerous studies have focused on the development of tyrosine kinase inhibitors (TKIs) to target the main pathways dysregulated in breast cancer, however their effectiveness is often limited either by resistance to treatments or the appearance of adverse effects. In this context, the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system represents an emerging transduction pathway and therapeutic target to be fully investigated among the diverse anti-cancer settings in breast cancer. Here, we have recapitulated previous studies dealing with FGFR molecular aberrations, such as the gene amplification, point mutations, and chromosomal translocations that occur in breast cancer. Furthermore, alterations in the FGF/FGFR signaling across the different subtypes of breast cancer have been described. Next, we discussed the functional interplay between the FGF/FGFR axis and important components of the breast tumor microenvironment. Lastly, we pointed out the therapeutic usefulness of FGF/FGFR inhibitors, as revealed by preclinical and clinical models of breast cancer.

12.
Cells ; 8(3)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866584

RESUMO

The FGF2/FGFR1 paracrine loop is involved in the cross-talk between breast cancer cells and components of the tumor stroma as cancer-associated fibroblasts (CAFs). By quantitative PCR (qPCR), western blot, immunofluorescence analysis, ELISA and ChIP assays, we demonstrated that 17ß-estradiol (E2) and the G protein estrogen receptor (GPER) agonist G-1 induce the up-regulation and secretion of FGF2 via GPER together with the EGFR/ERK/c-fos/AP-1 signaling cascade in (ER)-negative primary CAFs. Evaluating the genetic alterations from METABRIC and TCGA datasets, we then assessed that FGFR1 is the most frequently amplified FGFRs family member and its amplification/expression associates with shorter survival rates in breast cancer patients. Therefore, in order to assess the functional FGF2/FGFR1 interplay between CAFs and breast cancer cells, we generated the FGFR1-knockout MDA-MB-231 cells using CRISPR/Cas9 genome editing strategy. Using conditioned medium from estrogen-stimulated CAFs, we established that the activation of FGF2/FGFR1 paracrine signaling triggers the expression of the connective tissue growth factor (CTGF), leading to the migration and invasion of MDA-MB-231 cells. Our findings shed new light on the role elicited by estrogens through GPER in the activation of the FGF2/FGFR1 signaling. Moreover, our findings may identify further biological targets that could be considered in innovative combination strategies halting breast cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Progressão da Doença , Fator 2 de Crescimento de Fibroblastos/metabolismo , Comunicação Parácrina , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Meios de Cultivo Condicionados/farmacologia , Ciclopentanos/farmacologia , Estradiol/farmacologia , Feminino , Humanos , Invasividade Neoplásica , Comunicação Parácrina/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
13.
J Exp Clin Cancer Res ; 38(1): 58, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728047

RESUMO

BACKGROUND: Focal adhesion kinase (FAK) is a cytoplasmatic protein tyrosine kinase that associates with both integrins and growth factor receptors toward the adhesion, migration and invasion of cancer cells. The G-protein coupled estrogen receptor (GPER) has been involved in the stimulatory action of estrogens in breast tumor. In this study, we have investigated the engagement of FAK by GPER signaling in triple negative breast cancer (TNBC) cells. METHODS: Publicly available large-scale database and patient data sets derived from "The Cancer Genome Atlas" (TCGA; www.cbioportal.org ) were used to assess FAK expression in TNBC, non-TNBC tumors and normal breast tissues. MDA-MB 231 and SUM159 TNBC cells were used as model system. The levels of phosphorylated FAK, other transduction mediators and target genes were detected by western blotting analysis. Focal adhesion assay was carried out in order to determine the focal adhesion points and the formation of focal adhesions (FAs). Luciferase assays were performed to evaluate the promoters activity of c-FOS, EGR1 and CTGF upon GPER activation. The mRNA expression of the aforementioned genes was measured by real time-PCR. Boyden chamber and wound healing assays were used in order to evaluate cell migration. The statistical analysis was performed by ANOVA. RESULTS: We first determined by bioinformatic analysis that the mRNA expression levels of the gene encoding FAK, namely PTK2, is higher in TNBC respect to non-TNBC and normal breast tissues. Next, we found that estrogenic GPER signaling triggers Y397 FAK phosphorylation as well as the increase of focal adhesion points (FAs) in TNBC cells. Besides, we ascertained that GPER and FAK activation are involved in the STAT3 nuclear accumulation and gene expression changes. As biological counterpart, we show that FAK inhibition prevents the migration of TNBC cells upon GPER activation. CONCLUSIONS: The present data provide novel insights regarding the action of FAK in TNBC. Moreover, on the basis of our findings estrogenic GPER signaling may be considered among the transduction mechanisms engaging FAK toward breast cancer progression.


Assuntos
Estrogênios/metabolismo , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Movimento Celular , Bases de Dados Genéticas , Feminino , Adesões Focais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Neoplasias de Mama Triplo Negativas/genética
14.
Cells ; 7(11)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423928

RESUMO

Estrogens acting through the classic estrogen receptors (ERs) and the G protein estrogen receptor (GPER) regulate the expression of diverse miRNAs, small sequences of non-coding RNA involved in several pathophysiological conditions, including breast cancer. In order to provide novel insights on miRNAs regulation by estrogens in breast tumor, we evaluated the expression of 754 miRNAs by TaqMan Array in ER-negative and GPER-positive SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) upon 17ß-estradiol (E2) treatment. Various miRNAs were regulated by E2 in a peculiar manner in SkBr3 cancer cells and CAFs, while miR-338-3p displayed a similar regulation in both cell types. By METABRIC database analysis we ascertained that miR-338-3p positively correlates with overall survival in breast cancer patients, according to previous studies showing that miR-338-3p may suppress the growth and invasion of different cancer cells. Well-fitting with these data, a miR-338-3p mimic sequence decreased and a miR-338-3p inhibitor sequence rescued the expression of genes and the proliferative effects induced by E2 through GPER in SkBr3 cancer cells and CAFs. Altogether, our results provide novel evidence on the molecular mechanisms by which E2 may regulate miR-338-3p toward breast cancer progression.

15.
J Exp Clin Cancer Res ; 37(1): 94, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29716623

RESUMO

BACKGROUND: MicroRNA (miRNAs) are non-coding small RNA molecules that regulate gene expression by inhibiting the translation of target mRNAs. Among several dysregulated miRNAs in human cancer, the up-regulation of miR-221 has been associated with development of a variety of hematologic and solid malignancies. In this study, we investigated the involvement of miR-221 in breast cancer. METHODS: TaqMan microRNA assay was used to detect the miR-221 levels in normal cells and in MDA-MB 231 and SkBr3 breast cancer cells as well as in main players of the tumor microenvironment, namely cancer-associated fibroblasts (CAFs). miR-221 mimic sequence and locked nucleic acid (LNA)-i-miR-221 construct were used to induce or inhibit, respectively, the miR-221 expression in cells used. Quantitative PCR and western blotting analysis were performed to evaluate the levels of the miR-221 target gene A20 (TNFAIP3), as well as the member of the NF-kB complex namely c-Rel and the connective tissue growth factor (CTGF). Chromatin immunoprecipitation (ChIP) assay was performed to ascertain the recruitment of c-Rel to the CTFG promoter. Finally, the cell growth and migration in the presence of LNA-i-miR-221 or silencing c-Rel and CTGF by specific short hairpin were assessed by cell count, colony formation and boyden chambers assays. Statistical analysis was performed by ANOVA. RESULTS: We first demonstrated that LNA-i-miR-221 inhibits both endogenous and ectopic expression of miR-221 in our experimental models. Next, we found that the A20 down-regulation, as well as the up-regulation of c-Rel induced by miR-221 were no longer evident using LNA-i-miR-221. Moreover, we established that the miR-221 dependent recruitment of c-Rel to the NF-kB binding site located within the CTGF promoter region is prevented by using LNA-i-miR-221. Furthermore, we determined that the up-regulation of CTGF mRNA and protein levels by miR-221 is no longer evident using LNA-i-miR221 and silencing c-Rel. Finally, we assessed that cell growth and migration induced by miR-221 in MDA-MB 231 and SkBr3 breast cancer cells as well as in CAFs are abolished by LNAi-miR-221 and silencing c-Rel or CTGF. CONCLUSIONS: Overall, these data provide novel insights into the stimulatory action of miR-221 in breast cancer cells and CAFs, suggesting that its inhibition may be considered toward targeted therapeutic approaches in breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibroblastos/metabolismo , MicroRNAs/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Transdução de Sinais , Transfecção
16.
Nat Commun ; 9(1): 3327, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127402

RESUMO

Patients diagnosed with lung squamous cell carcinoma (LUSC) have limited targeted therapies. We report here the identification and characterisation of BCL11A, as a LUSC oncogene. Analysis of cancer genomics datasets revealed BCL11A to be upregulated in LUSC but not in lung adenocarcinoma (LUAD). Experimentally we demonstrate that non-physiological levels of BCL11A in vitro and in vivo promote squamous-like phenotypes, while its knockdown abolishes xenograft tumour formation. At the molecular level we found that BCL11A is transcriptionally regulated by SOX2 and is required for its oncogenic functions. Furthermore, we show that BCL11A and SOX2 regulate the expression of several transcription factors, including SETD8. We demonstrate that shRNA-mediated or pharmacological inhibition of SETD8 selectively inhibits LUSC growth. Collectively, our study indicates that BCL11A is integral to LUSC pathology and highlights the disruption of the BCL11A-SOX2 transcriptional programme as a novel candidate for drug development.


Assuntos
Carcinoma de Células Escamosas/genética , Proteínas de Transporte/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Loci Gênicos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Oncogenes , Organoides/patologia , Ligação Proteica , Proteínas Repressoras
17.
AAPS J ; 18(1): 41-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26573009

RESUMO

Estrogens influence multiple physiological processes and are implicated in many diseases as well. Cellular responses to estrogens are mainly mediated by the estrogen receptors (ER)α and ERß, which act as ligand-activated transcription factors. Recently, a member of the G protein-coupled receptor (GPCR) superfamily, namely GPER/GPR30, has been identified as a further mediator of estrogen signalling in different pathophysiological conditions, including cancer. Today, computational methods are commonly used in all areas of health science research. Among these methods, virtual ligand screening has become an established technique for hit discovery and optimization. The absence of an established three-dimensional structure of GPER promoted studies of structure-based drug design in order to build reliable molecular models of this receptor. Here, we discuss the results obtained through the structure-based virtual ligand screening for GPER, which allowed the identification and synthesis of different selective agonist and antagonist moieties. These compounds led significant advances in our understanding of the GPER function at the cellular, tissue, and organismal levels. In particular, selective GPER ligands were critical toward the evaluation of the role elicited by this receptor in several pathophysiological conditions, including cancer. Considering that structure-based approaches are fundamental in drug discovery, future research breakthroughs with the aid of computer-aided molecular design and chemo-bioinformatics could generate a new class of drugs that, acting through GPER, would be useful in a variety of diseases as well as in innovative anticancer strategies.


Assuntos
Descoberta de Drogas/métodos , Substâncias Macromoleculares/química , Simulação de Acoplamento Molecular/métodos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Biologia Computacional , Humanos , Relação Estrutura-Atividade
18.
Oncotarget ; 7(1): 94-111, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26646587

RESUMO

Aldosterone induces relevant effects binding to the mineralcorticoid receptor (MR), which acts as a ligand-gated transcription factor. Alternate mechanisms can mediate the action of aldosterone such as the activation of epidermal growth factor receptor (EGFR), MAPK/ERK, transcription factors and ion channels. The G-protein estrogen receptor (GPER) has been involved in the stimulatory effects of estrogenic signalling in breast cancer. GPER has been also shown to contribute to certain responses to aldosterone, however the role played by GPER and the molecular mechanisms implicated remain to be fully understood. Here, we evaluated the involvement of GPER in the stimulatory action exerted by aldosterone in breast cancer cells and breast tumor derived endothelial cells (B-TEC). Competition assays, gene expression and silencing studies, immunoblotting and immunofluorescence experiments, cell proliferation and migration were performed in order to provide novel insights into the role of GPER in the aldosterone-activated signalling. Our results demonstrate that aldosterone triggers the EGFR/ERK transduction pathway in a MR- and GPER-dependent manner. Aldosterone does not bind to GPER, it however induces the direct interaction between MR and GPER as well as between GPER and EGFR. Next, we ascertain that the up-regulation of the Na+/H+ exchanger-1 (NHE-1) induced by aldosterone involves MR and GPER. Biologically, both MR and GPER contribute to the proliferation and migration of breast and endothelial cancer cells mediated by NHE-1 upon aldosterone exposure. Our data further extend the current knowledge on the molecular mechanisms through which GPER may contribute to the stimulatory action elicited by aldosterone in breast cancer.


Assuntos
Aldosterona/farmacologia , Células Endoteliais/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Endoteliais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Microscopia de Fluorescência , Ligação Proteica/efeitos dos fármacos , Interferência de RNA , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Imagem com Lapso de Tempo/métodos
19.
Oncotarget ; 7(33): 52710-52728, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27384677

RESUMO

Insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) system has been largely involved in the pathogenesis and development of various tumors. We have previously demonstrated that IGF-IR cooperates with the G-protein estrogen receptor (GPER) and the collagen receptor discoidin domain 1 (DDR1) that are implicated in cancer progression. Here, we provide novel evidence regarding the molecular mechanisms through which IGF-I/IGF-IR signaling triggers a functional cross-talk with GPER and DDR1 in both mesothelioma and lung cancer cells. In particular, we show that IGF-I activates the transduction network mediated by IGF-IR leading to the up-regulation of GPER and its main target genes CTGF and EGR1 as well as the induction of DDR1 target genes like MATN-2, FBN-1, NOTCH 1 and HES-1. Of note, certain DDR1-mediated effects upon IGF-I stimulation required both IGF-IR and GPER as determined knocking-down the expression of these receptors. The aforementioned findings were nicely recapitulated in important biological outcomes like IGF-I promoted chemotaxis and migration of both mesothelioma and lung cancer cells. Overall, our data suggest that IGF-I/IGF-IR system triggers stimulatory actions through both GPER and DDR1 in aggressive tumors as mesothelioma and lung tumors. Hence, this novel signaling pathway may represent a further target in setting innovative anticancer strategies.


Assuntos
Receptor com Domínio Discoidina 1/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Receptor Cross-Talk/efeitos dos fármacos , Receptor IGF Tipo 1/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células A549 , Linhagem Celular Tumoral , Receptor com Domínio Discoidina 1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma/patologia , Interferência de RNA , Receptor IGF Tipo 1/genética , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Imagem com Lapso de Tempo/métodos
20.
Future Med Chem ; 7(4): 437-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875871

RESUMO

BACKGROUND: G-protein coupled estrogen receptor (GPER) is involved in numerous intracellular physiological and pathological events including cancer cell migration and proliferation. Its characterization is yet incomplete due to the limited number of specific ligands. RESULTS: Two novel selective GPER antagonists, based on a benzo[b]pyrrolo[1,2-d][1,4]oxazin-4-one structure, have been designed and synthesized. Their binding to the receptor was confirmed by a competition assay, while the antagonist effects were ascertained by their capability to prevent the ligand-stimulated action of GPER. The transcription mediated by the classical estrogen receptor was not influenced, demonstrating selectivity for GPER. CONCLUSION: These novel compounds may be considered useful leads toward the dissection of the GPER signaling and the development of new pharmacological treatments in breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Pirróis/síntese química , Pirróis/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Ligação Competitiva , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Indicadores e Reagentes , Ligantes , Modelos Moleculares , Conformação Molecular , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA