Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Pharm ; 662: 124464, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39033939

RESUMO

Leishmaniases, a group of neglected tropical diseases caused by an intracellular parasite of the genus Leishmania, have significant impacts on global health. Current treatment options are limited due to drug resistance, toxicity, and high cost. This study aimed to develop nanostructured lipid carriers (NLCs) for delivering Citrus sinensis essential oil (CSEO) and its main constituent, R-limonene, against leishmaniasis. The influence of surface-modified NLCs using chitosan was also examined. The NLCs were prepared using a warm microemulsion method, and surface modification with chitosan was achieved through electrostatic interaction. These nanocarriers were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy, and dynamic light scattering (DLS). In vitro cytotoxicity was assessed in L929 and RAW 264.7 cells, and leishmanicidal activity was evaluated against promastigote and amastigote forms. The NLCs were spherical, with particle sizes ranging from 97.9 nm to 111.3 nm. Chitosan-coated NLCs had a positive surface charge, with zeta potential values ranging from 45.8 mV to 59.0 mV. Exposure of L929 cells to NLCs resulted in over 70 % cell viability. Conversely, surface modification significantly reduced the viability of promastigotes (93 %) compared to free compounds. Moreover, chitosan-coated NLCs presented a better IC50 against the amastigote forms than uncoated NLCs. Taken together, these findings demonstrate the feasibility of using NLCs to overcome the limitations of current leishmaniasis treatments, warranting further research.


Assuntos
Sobrevivência Celular , Quitosana , Citrus sinensis , Portadores de Fármacos , Limoneno , Lipídeos , Nanopartículas , Óleos Voláteis , Óleos Voláteis/administração & dosagem , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Animais , Camundongos , Limoneno/química , Limoneno/administração & dosagem , Limoneno/farmacologia , Portadores de Fármacos/química , Células RAW 264.7 , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Quitosana/administração & dosagem , Lipídeos/química , Lipídeos/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Citrus sinensis/química , Antiprotozoários/administração & dosagem , Antiprotozoários/farmacologia , Antiprotozoários/química , Leishmaniose/tratamento farmacológico , Tamanho da Partícula , Linhagem Celular , Leishmania/efeitos dos fármacos , Terpenos/química , Terpenos/farmacologia , Terpenos/administração & dosagem , Nanoestruturas/química , Nanoestruturas/administração & dosagem
2.
Eur J Pharm Sci ; 150: 105335, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32272211

RESUMO

Leishmaniasis are a group of neglected infectious diseases caused by protozoa of the genus Leishmania with distinct presentations. The available leishmaniasis treatment options are either expensive and/or; cause adverse effects and some are ineffective for resistant Leishmania strains. Therefore, molecules derived from natural products as the monoterpene carvacrol, have attracted interest as promising anti-leishmania agents. However, the therapeutic use of carvacrol is limited due to its low aqueous solubility, rapid oxidation and volatilization. Thus, the development of nanostructured lipid carriers (NLCs) was proposed in the present study as a promising nanotechnology strategy to overcome these limitations and enable the use of carvacrol in leishmaniasis therapy. Carvacrol NLCs were obtained using a warm microemulsion method, and evaluated regarding the influence of lipid matrix and components concentration on the NLCs formation. NLCs were characterized by DSC and XRD as well. In addition, to the in vitro carvacrol release from NLCs, the in vitro cytotoxicity and leishmanicidal activity assays, and the in vivo pharmacokinetics evaluation of free and encapsulated carvacrol were performed. NLCs containing carvacrol were obtained successfully using a warm microemulsion dilution method. The NLCs formulation with the lowest particle size (98.42 ± 0.80 nm), narrowest size distribution (suitable for intravenous administration), and the highest encapsulation efficiency was produced by using beeswax as solid lipid (HLB=9) and 5% of lipids and surfactant. The in vitro release of carvacrol from NLCs was fitted to the Korsmeyer and Peppas, and Weibull models, demonstrating that the release mechanism is probably the Fickian diffusion type. Moreover, carvacrol encapsulation in NLCs provided a lower cytotoxicity in comparison to free carvacrol (p<0.05), increasing its in vitro leishmanicidal efficacy in the amastigote form. Finally, the in vivo pharmacokinetics of carvacrol after IV bolus administration suggests that this phenolic monoterpene undergoes enterohepatic circulation and therefore presented a long half-life (t1/2) and low clearance (Cl). In addition, C0, mean residence time (MRT) and Vdss of encapsulated carvacrol were higher than free carvacrol (p < 0.05), favoring a higher distribution of carvacrol in the target tissues. Thus, it is possible to conclude that the developed NLCs are a promising delivery system for leishmaniasis treatment.


Assuntos
Antiprotozoários/administração & dosagem , Cimenos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Leishmania/efeitos dos fármacos , Nanoestruturas/administração & dosagem , Animais , Antiprotozoários/sangue , Antiprotozoários/química , Antiprotozoários/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Cimenos/sangue , Cimenos/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Humanos , Leishmaniose/tratamento farmacológico , Lipídeos/administração & dosagem , Lipídeos/química , Lipídeos/farmacocinética , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Ratos Wistar , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA