Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytotherapy ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39115513

RESUMO

BACKGROUND: The preclinical efficacy of mesenchymal stem cell (MSC) therapy after intravenous infusion has been promising, but clinical studies have yielded only modest results. Although most preclinical studies have focused solely on the ischemic lung, it is crucial to evaluate both lungs after ischemia-reperfusion injury, considering the various mechanisms involved. This study aimed to bridge this gap by assessing the acute effects of bone marrow MSC(BM) infusion before ischemic insult and evaluating both ischemic and non-ischemic lungs after reperfusion. METHODS: Eighteen male Wistar rats (403 ± 23 g) were anesthetized and mechanically ventilated using a protective strategy. After baseline data collection, the animals were randomized to 3 groups (n = 6/group): (1) SHAM; (2) ischemia-reperfusion (IR), and (3) intravenous MSC(BM) infusion followed by IR. Ischemia was induced by complete clamping of the left hilum, followed by 1 h of reperfusion after clamp removal. At the end of the experiment, the right and left lungs (non-ischemic and ischemic, respectively) were collected for immunohistochemistry and molecular biology analysis. RESULTS: MSC(BM)s reduced endothelial cell damage and apoptosis markers and improved markers associated with endothelial cell integrity in both lungs. In addition, gene expression of catalase and nuclear factor erythroid 2-related factor 2 increased after MSC(BM) therapy. In the ischemic lung, MSC(BM) therapy mitigated endothelial cell damage and apoptosis and increased gene expression associated with endothelial cell integrity. Conversely, in the non-ischemic lung, apoptosis gene expression increased in the IR group but not after MSC(BM) therapy. CONCLUSION: This study demonstrates distinct effects of MSC(BM) therapy on ischemic and non-ischemic lungs after ischemia-reperfusion injury. The findings underscore the importance of evaluating both lung types in ischemia-reperfusion studies, offering insights into the therapeutic potential of MSC(BM) therapy in the context of lung injury.

2.
Cytotherapy ; 24(12): 1211-1224, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36192337

RESUMO

BACKGROUND AIMS: Although bone marrow-derived mesenchymal stromal cells (MSCs) have demonstrated success in pre-clinical studies, they have shown only mild therapeutic effects in clinical trials. Hypoxia pre-conditioning may optimize the performance of bone marrow-derived MSCs because it better reflects the physiological conditions of their origin. It is not known whether changes in the protein profile caused by hypoxia in MSCs can be extended to the extracellular vesicles (EVs) released from them. The aim of this study was to evaluate the proteomics profile of MSCs and their EVs under normoxic and hypoxic conditions. METHODS: Bone marrow-derived MSCs were isolated from six healthy male Wistar rats. After achieving 80% confluence, MSCs were subjected to normoxia (MSC-Norm) (21% oxygen, 5% carbon dioxide, 74% nitrogen) or hypoxia (MSC-Hyp) (1% oxygen, 5% carbon dioxide, 94% nitrogen) for 48 h. Cell viability and oxygen consumption rate were assessed. EVs were extracted from MSCs for each condition (EV-Norm and EV-Hyp) by ultracentrifugation. Total proteins were isolated from MSCs and EVs and prepared for mass spectrometry. EVs were characterized by nanoparticle tracking analysis. Proteomics data were analyzed by PatternLab 4.0, Search Tool for the Retrieval of Interacting Genes/Proteins, Gene Ontology, MetaboAnalyst and Reactome software. RESULTS: Cell viability was higher in MSC-Hyp than MSC-Norm (P = 0.007). Basal respiration (P = 0.001), proton leak (P = 0.004) and maximal respiration (P = 0.014) were lower in MSC-Hyp than MSC-Norm, and no changes in adenosine triphosphate-linked and residual respiration were observed. The authors detected 2177 proteins in MSC-Hyp and MSC-Norm, of which 147 were identified in only MSC-Hyp and 512 were identified in only MSC-Norm. Furthermore, 718 proteins were identified in EV-Hyp and EV-Norm, of which 293 were detected in only EV-Hyp and 30 were detected in only EV-Norm. Both MSC-Hyp and EV-Hyp showed enrichment of pathways and biological processes related to glycolysis, the immune system and extracellular matrix organization. CONCLUSIONS: MSCs subjected to hypoxia showed changes in their survival and metabolic activity. In addition, MSCs under hypoxia released more EVs, and their content was related to expression of regulatory proteins of the immune system and extracellular matrix organization. Because of the upregulation of proteins involved in glycolysis, gluconeogenesis and glucose uptake during hypoxia, production of reactive oxygen species and expression of immunosuppressive properties may be affected.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Ratos , Masculino , Proteômica , Dióxido de Carbono/metabolismo , Ratos Wistar , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Nitrogênio/metabolismo
3.
Crit Care Med ; 49(9): e880-e890, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33870913

RESUMO

OBJECTIVES: To ascertain whether systemic administration of mitochondria-rich fraction isolated from mesenchymal stromal cells would reduce lung, kidney, and liver injury in experimental sepsis. DESIGN: Animal study. SETTING: Laboratory investigation. SUBJECTS: Sixty C57BL/6 male mice. INTERVENTIONS: Sepsis was induced by cecal ligation and puncture; sham-operated animals were used as control. At 24 hours after surgery, cecal ligation and puncture and Sham animals were further randomized to receive saline or mitochondria-rich fraction isolated from mesenchymal stromal cells (3 × 106) IV. At 48 hours, survival, peritoneal bacterial load, lung, kidney, and liver injury were analyzed. Furthermore, the effects of mitochondria on oxygen consumption rate and reactive oxygen species production of lung epithelial and endothelial cells were evaluated in vitro. MEASUREMENTS AND MAIN RESULTS: In vitro exposure of lung epithelial and endothelial cells from cecal ligation and puncture animals to mitochondria-rich fraction isolated from mesenchymal stromal cells restored oxygen consumption rate and reduced total reactive oxygen species production. Infusion of exogenous mitochondria-rich fraction from mesenchymal stromal cells (mitotherapy) reduced peritoneal bacterial load, improved lung mechanics and histology, and decreased the expression of interleukin-1ß, keratinocyte chemoattractant, indoleamine 2,3-dioxygenase-2, and programmed cell death protein 1 in lung tissue, while increasing keratinocyte growth factor expression and survival rate in cecal ligation and puncture-induced sepsis. Mitotherapy also reduced kidney and liver injury, plasma creatinine levels, and messenger RNA expressions of interleukin-18 in kidney, interleukin-6, indoleamine 2,3-dioxygenase-2, and programmed cell death protein 1 in liver, while increasing nuclear factor erythroid 2-related factor-2 and superoxide dismutase-2 in kidney and interleukin-10 in liver. CONCLUSIONS: Mitotherapy decreased lung, liver, and kidney injury and increased survival rate in cecal ligation and puncture-induced sepsis.


Assuntos
Células-Tronco Mesenquimais/patologia , Mitocôndrias/metabolismo , Sepse/complicações , Animais , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/patologia , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL/metabolismo , Insuficiência de Múltiplos Órgãos
4.
Curr Vasc Pharmacol ; 22(3): 155-170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38115617

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by an imbalance between vasoactive mediators, which causes vascular remodeling, increased pulmonary vascular resistance, and right ventricular overload, ultimately leading to heart failure and death. A metabolic theory has been suggested to explain the pathophysiology of PAH whereby abnormalities in mitochondrial biogenesis can trigger a hyperproliferative and apoptosis-resistant phenotype in cardiopulmonary and malignant cells, leading to mitochondrial dysfunction, which in turn causes the Warburg effect. This can culminate in the mitophagy of pulmonary vessels and cardiomyocytes. The present narrative review focuses on the pathophysiology of PAH, the pharmacological agents currently available for its treatment, and promising and challenging areas of therapeutic investigation.


Assuntos
Anti-Hipertensivos , Hipertensão Arterial Pulmonar , Artéria Pulmonar , Humanos , Animais , Anti-Hipertensivos/uso terapêutico , Anti-Hipertensivos/efeitos adversos , Anti-Hipertensivos/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pressão Arterial/efeitos dos fármacos , Resultado do Tratamento , Remodelação Vascular/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia
5.
Life Sci ; 329: 121988, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37517581

RESUMO

AIMS: To evaluate BM-MSCs and their extracellular vesicles (EVs) preconditioned with hypoxia or normoxia in experimental pulmonary arterial hypertension (PAH). MAIN METHODS: BM-MSCs were isolated and cultured under normoxia (MSC-N, 21%O2) or hypoxia (MSC-H, 1%O2) for 48 h. EVs were then isolated from MSCs under normoxia (EV-N) or hypoxia (EV-H). PAH was induced in male Wistar rats (n = 35) with monocrotaline (60 mg/kg); control animals (CTRL, n = 7) were treated with saline. On day 14, PAH animals received MSCs or EVs under normoxia or hypoxia, intravenously (n = 7/group). On day 28, right ventricular systolic pressure (RVSP), pulmonary acceleration time (PAT)/pulmonary ejection time (PET), and right ventricular hypertrophy (RVH) index were evaluated. Perivascular collagen content, vascular wall thickness, and endothelium-mesenchymal transition were analyzed. KEY FINDINGS: PAT/PET was lower in the PAH group (0.26 ± 0.02, P < 0.001) than in CTRLs (0.43 ± 0.02) and only increased in the EV-H group (0.33 ± 0.03, P = 0.014). MSC-N (32 ± 6 mmHg, P = 0.036), MSC-H (31 ± 3 mmHg, P = 0.019), EV-N (27 ± 4 mmHg, P < 0.001), and EV-H (26 ± 5 mmHg, P < 0.001) reduced RVSP compared with the PAH group (39 ± 4 mmHg). RVH was higher in the PAH group than in CTRL and reduced after all therapies. All therapies decreased perivascular collagen fiber content, vascular wall thickness, and the expression of endothelial markers remained unaltered; only MSC-H and EV-H decreased expression of mesenchymal markers in pulmonary arterioles. SIGNIFICANCE: MSCs and EVs, under normoxia or hypoxia, reduced right ventricular hypertrophy, perivascular collagen, and vessel wall thickness. Under hypoxia, MSCs and EVs were more effective at improving endothelial to mesenchymal transition in experimental PAH.


Assuntos
Vesículas Extracelulares , Hipertensão Pulmonar , Células-Tronco Mesenquimais , Hipertensão Arterial Pulmonar , Ratos , Animais , Masculino , Hipertensão Arterial Pulmonar/terapia , Hipertensão Arterial Pulmonar/metabolismo , Hipertrofia Ventricular Direita , Medula Óssea/metabolismo , Células Cultivadas , Ratos Wistar , Hipertensão Pulmonar Primária Familiar , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Colágeno/metabolismo , Hipóxia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA