RESUMO
Circulating tumour-derived extracellular vesicles are supposed to contribute to the spreading of distant metastasis. In this study, we investigated the impact of circulating extracellular vesicles derived from tumour-endothelial cells (TEVs) in the expansion of the metastatic bulk. We focus on the role of immune cells in controlling this process using the 4T1 triple negative breast cancer (TNBC) syngeneic model. 4T1 cells were intravenously injected and exposed to circulating TEVs from day 7. The lung, spleen, and bone marrow (BM) were recovered and analysed. We demonstrated that circulating TEVs boost lung metastasis and angiogenesis. FACS and immunohistochemically analyses revealed a significant enrichment of Ly6G+/F4/80+/CD11b+ cells and Ly6G+/F4/80-/CD11b+ in the lung and in the spleen, while Ly6G+/F4/80-/CD11b+ in the BM, indicating the occurrence of a systemic and local immune suppression. TEV immune suppressive properties were further supported by the increased expression of PD-L1, PD-1, and iNOS in the tumour mass. In addition, in vitro experiments demonstrated an increase of CD11+ cells, PD-L1+ myeloid and cancer cells, upregulation of LAG3, CTLA4 and PD-1 in T-cells, release of ROS and NOS, and impaired T-cell-mediated cytotoxic effect in co-culture of TEVs-preconditioned PBMCs and cancer cells. Granulocyte-colony stimulating factor (G-CSF) level was increased in vivo, and was involved in reshaping the immune response. Mechanistically, we also found that mTOR enriched TEVs support G-CSF release and trigger the phosphorylation of the S6 (Ser235/236) mTOR downstream target. Overall, we provided evidence that circulating TEVs enriched in mTOR supported G-CSF release thereby granting tumour immune suppression and metastasis outgrowth.
Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Células Endoteliais , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Serina-Treonina Quinases TOR , Fator Estimulador de Colônias de Granulócitos , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular TumoralRESUMO
Current therapeutic approaches for chronic venous ulcers (CVUs) still require evidence of effectiveness. Diverse sources of extracellular vesicles (EVs) have been proposed for tissue regeneration, however the lack of potency tests, to predict in-vivo effectiveness, and a reliable scalability have delayed their clinical application. This study aimed to investigate whether autologous serum-derived EVs (s-EVs), recovered from patients with CVUs, may be a proper therapeutic approach to improve the healing process. A pilot case-control interventional study (CS2/1095/0090491) has been designed and s-EVs recovered from patients. Patient eligibility included two or more distinct chronic lesions in the same limb with 11 months as median persistence of active ulcer before enrollment. Patients were treated three times a week, for 2 weeks. Qualitative CVU analysis demonstrated that s-EVs-treated lesions displayed a higher percentage of granulation tissue compared to the control group (Sham) (s-EVs 3 out of 5: 75-100 % vs Sham: none), further confirmed at day 30. s-EVs-treated lesions also displayed higher sloughy tissue reduction at the end of treatment even increased at day 30. Additionally, s-EV treatment led to a median surface reduction of 151 mm2 compared to 84 mm2 in the Sham group, difference even more evident at day 30 (s-EVs 385 mm2vs Sham 106 mm2p = 0.004). Consistent with the enrichment of transforming growth factor-ß1 in s-EVs, histological analyses showed a regenerative tissue with an increase in microvascular proliferation areas. This study first demonstrates the clinical effectiveness of autologous s-EVs in promoting the healing process of CVUs unresponsive to conventional treatments.
Assuntos
Vesículas Extracelulares , Úlcera Varicosa , Doenças Vasculares , Humanos , Úlcera Varicosa/terapia , Resultado do Tratamento , CicatrizaçãoRESUMO
Non-healing wound- and tissue-injury are commonly experienced worldwide by the aging population. The persistence of disease commonly leads to tissue infection, resulting in severe clinical complications. In the last decade, extracellular vesicles (EVs) have been considered promising and emergent therapeutic tools to improve the healing processes. Therefore, efforts have been directed to develop a cell-free therapeutic platform based on EV administration to orchestrate tissue repair. EVs derived from different cell types, including fibroblast, epithelial, and immune cells are recruited to the injured sites and in turn take part in scar formation. EVs are nano-sized particles containing a heterogeneous cargo consisting of lipids, proteins, and nucleic acids protected from degradation by their lipid bilayer. Noteworthy, since EVs have natural biocompatibility and low immunogenicity, they represent the ideal therapeutic candidates for regenerative purposes. Indeed, EVs are released by several cell types, and even if they possess unique biological properties, their functional capability can be further improved by engineering their content and functionalizing their surface, allowing a specific cell cargo delivery. Herein, we provide an overview of preclinical data supporting the contribution of EVs in the repair and regenerative processes, focusing on different naïve EV sources, as well as on their engineering, to offer a scalable and low-cost therapeutic option for tissue repair.
Assuntos
Vesículas Extracelulares , Humanos , Idoso , Cicatriz , Fibroblastos , Bicamadas LipídicasRESUMO
The p140Cap adaptor protein is a tumor suppressor in breast cancer associated with a favorable prognosis. Here we highlight a function of p140Cap in orchestrating local and systemic tumor-extrinsic events that eventually result in inhibition of the polymorphonuclear myeloid-derived suppressor cell function in creating an immunosuppressive tumor-promoting environment in the primary tumor, and premetastatic niches at distant sites. Integrative transcriptomic and preclinical studies unravel that p140Cap controls an epistatic axis where, through the upstream inhibition of ß-Catenin, it restricts tumorigenicity and self-renewal of tumor-initiating cells limiting the release of the inflammatory cytokine G-CSF, required for polymorphonuclear myeloid-derived suppressor cells to exert their local and systemic tumor conducive function. Mechanistically, p140Cap inhibition of ß-Catenin depends on its ability to localize in and stabilize the ß-Catenin destruction complex, promoting enhanced ß-Catenin inactivation. Clinical studies in women show that low p140Cap expression correlates with reduced presence of tumor-infiltrating lymphocytes and more aggressive tumor types in a large cohort of real-life female breast cancer patients, highlighting the potential of p140Cap as a biomarker for therapeutic intervention targeting the ß-Catenin/ Tumor-initiating cells /G-CSF/ polymorphonuclear myeloid-derived suppressor cell axis to restore an efficient anti-tumor immune response.
Assuntos
Neoplasias da Mama , Feminino , Humanos , beta Catenina/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Imunidade , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismoRESUMO
Control of the immune response is crucial for tumour onset and progression. Tumour cells handle the immune reaction by means of secreted factors and extracellular vesicles (EV). Tumour-derived extracellular vesicles (TEV) play key roles in immune reprogramming by delivering their cargo to different immune cells. Tumour-surrounding tissues also contribute to tumour immune editing and evasion, tumour progression, and drug resistance via locally released TEV. Moreover, the increase in circulating TEV has suggested their underpinning role in tumour dissemination. This review brings together data referring to TEV-driven immune regulation and antitumour immune suppression. Attention was also dedicated to TEV-mediated drug resistance.
RESUMO
Tumour molecular annotation is mandatory for biomarker discovery and personalised approaches, particularly in triple-negative breast cancer (TNBC) lacking effective treatment options. In this study, the interleukin-3 receptor α (IL-3Rα) was investigated as a prognostic biomarker and therapeutic target in TNBC. IL-3Rα expression and patients' clinical and pathological features were retrospectively analysed in 421 TNBC patients. IL-3Rα was expressed in 69% human TNBC samples, and its expression was associated with nodal metastases (p = 0.026) and poor overall survival (hazard ratio = 1.50; 95% CI = 1.01-2.2; p = 0.04). The bioinformatics analysis on the Breast Invasive Carcinoma dataset of The Cancer Genome Atlas (TCGA) proved that IL-3Rα was highly expressed in TNBC compared with luminal breast cancers (p = 0.017, padj = 0.026). Functional studies demonstrated that IL-3Rα activation induced epithelial-to-endothelial and epithelial-to-mesenchymal transition, promoted large blood lacunae and lung metastasis formation, and increased programmed-cell death ligand-1 (PD-L1) in primary tumours and metastases. Based on the TCGA data, IL-3Rα, PD-L1, and EMT coding genes were proposed to discriminate against TNBC aggressiveness (AUC = 0.86 95% CI = 0.82-0.89). Overall, this study identified IL-3Rα as an additional novel biomarker of TNBC aggressiveness and provided the rationale to further investigate its relevance as a therapeutic target.