Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Traffic ; 24(2): 95-107, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36533718

RESUMO

G protein-coupled receptors (GPCRs) are vital cellular signaling machinery and currently represent ~40% drug targets. Endocytosis of GPCRs is an important process that allows stringent spatiotemporal control over receptor population on the cell surface. Although the role of proteins in GPCR endocytosis is well addressed, the contribution of membrane lipids in this process is rather unexplored. Sphingolipids are essential functional lipids in higher eukaryotes and are implicated in several neurological functions. To understand the role of sphingolipids in GPCR endocytosis, we subjected cells expressing human serotonin1A receptors (an important neurotransmitter GPCR involved in cognitive and behavioral functions) to metabolic sphingolipid depletion using fumonisin B1 , an inhibitor of sphingolipid biosynthetic pathway. Our results, using flow cytometric analysis and confocal microscopic imaging, show that sphingolipid depletion inhibits agonist-induced endocytosis of the serotonin1A receptor in a concentration-dependent manner, which was restored when sphingolipid levels were replenished. We further show that there was no change in the internalization of transferrin, a marker for clathrin-mediated endocytosis, under sphingolipid-depleted condition, highlighting the specific requirement of sphingolipids for endocytosis of serotonin1A receptors. Our results reveal the regulatory role of sphingolipids in GPCR endocytosis and highlight the importance of neurotransmitter receptor trafficking in health and disease.


Assuntos
Serotonina , Esfingolipídeos , Humanos , Membrana Celular/metabolismo , Endocitose/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Esfingolipídeos/metabolismo
2.
Biophys J ; 122(11): 1938-1955, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36045572

RESUMO

The function of the actin cytoskeleton in cellular motility and trafficking has been widely studied. However, reorganization of the actin cytoskeleton upon modulation of membrane cholesterol and its consequences on membrane dynamics are addressed only rarely. In a recent work, we reported that chronic cholesterol depletion using statins leads to significant polymerization of the actin cytoskeleton. In this work, we explore the effect of reorganization of the actin cytoskeleton on membrane dynamics under cholesterol-depleted condition. Specifically, we explore the role of actin cytoskeleton in regulating the dynamics of the serotonin1A receptor, a crucial neurotransmitter G protein-coupled receptor (GPCR) that plays a major role in the generation and modulation of cognitive and behavioral functions. For this, we analyzed the lateral dynamics of the serotonin1A receptor in cholesterol-depleted cells (using statins) by fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) measurements. Our results indicate that lateral diffusion parameters of serotonin1A receptors in normal cells are consistent with models describing the diffusion of molecules in a homogeneous membrane. Interestingly, these parameters are altered in cholesterol-depleted cells and the receptor exhibits dynamic confinement. Notably, our results show that statin-induced dynamic confinement could be reversed by destabilization of the actin cytoskeleton. On a broader perspective, these results assume significance in understanding the modulatory role of the membrane environment on the organization and dynamics of GPCRs in diseases caused by altered cholesterol biosynthesis.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Actinas , Polimerização , Serotonina/farmacologia , Receptores Acoplados a Proteínas G , Membrana Celular , Colesterol
3.
J Lipid Res ; 63(5): 100206, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390404

RESUMO

Previous work from us and others has suggested that cholesterol is an important lipid in the context of the organization of the actin cytoskeleton. However, reorganization of the actin cytoskeleton upon modulation of membrane cholesterol is rarely addressed in the literature. In this work, we explored the signaling crosstalk between cholesterol and the actin cytoskeleton by using a high-resolution confocal microscopic approach to quantitatively measure changes in F-actin content upon cholesterol depletion. Our results show that F-actin content significantly increases upon chronic cholesterol depletion, but not during acute cholesterol depletion. In addition, utilizing inhibitors targeting the cholesterol biosynthetic pathway at different steps, we show that reorganization of the actin cytoskeleton could occur due to the synergistic effect of multiple pathways, including prenylated Rho GTPases and availability of membrane phosphatidylinositol 4,5-bisphosphate. These results constitute one of the first comprehensive dissections of the mechanistic basis underlying the interplay between cellular actin levels and cholesterol biosynthesis. We envision these results will be relevant for future understating of the remodeling of the actin cytoskeleton in pathological conditions with altered cholesterol.


Assuntos
Actinas , Citoesqueleto , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Colesterol/metabolismo , Citoesqueleto/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/farmacologia
4.
J Membr Biol ; 255(1): 99-106, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34365520

RESUMO

Bound cholesterol molecules are emerging as important hallmarks of GPCR structures. In this commentary, we analyze their statistical prevalence and biological relevance.


Assuntos
Colesterol , Receptores Acoplados a Proteínas G , Colesterol/química , Microscopia Crioeletrônica , Prevalência , Receptores Acoplados a Proteínas G/metabolismo
5.
J Membr Biol ; 255(1): 1-12, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34392379

RESUMO

The cell cycle is a sequential multi-step process essential for growth and proliferation of cells comprising multicellular organisms. Although a number of proteins are known to modulate the cell cycle, the role of lipids in regulation of cell cycle is still emerging. In our previous work, we monitored the role of cholesterol in cell cycle progression in CHO-K1 cells. Since sphingolipids enjoy a functionally synergistic relationship with membrane cholesterol, in this work, we explored whether sphingolipids could modulate the eukaryotic cell cycle using CHO-K1 cells. Sphingolipids are essential components of eukaryotic cell membranes and are involved in a number of important cellular functions. To comprehensively monitor the role of sphingolipids on cell cycle progression, we carried out metabolic depletion of sphingolipids in CHO-K1 cells using inhibitors (fumonisin B1, myriocin, and PDMP) that block specific steps of the sphingolipid biosynthetic pathway and examined their effect on individual cell cycle phases. Our results show that metabolic inhibitors led to significant reduction in specific sphingolipids, yet such inhibition in sphingolipid biosynthesis did not show any effect on cell cycle progression in CHO-K1 cells. We speculate that any role of sphingolipids on cell cycle progression could be context and cell-type dependent, and cancer cells could be a better choice for monitoring such regulation, since sphingolipids are differentially modulated in these cells.


Assuntos
Colesterol , Esfingolipídeos , Animais , Células CHO , Ciclo Celular , Colesterol/metabolismo , Cricetinae , Cricetulus
6.
J Membr Biol ; 255(6): 739-746, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35986776

RESUMO

G protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins that transduce signals across the plasma membrane and orchestrate a multitude of physiological processes within cells. The serotonin1A receptor is a crucial neurotransmitter receptor in the GPCR family involved in a multitude of neurological, behavioral and cognitive functions. We have previously shown, using a combination of experimental and simulation approaches, that membrane cholesterol acts as a key regulator of organization, dynamics, signaling and endocytosis of the serotonin1A receptor. In addition, we showed that membrane cholesterol stabilizes the serotonin1A receptor against thermal deactivation. In the present work, we explored the molecular basis of cholesterol-induced thermal stability of the serotonin1A receptor. For this, we explored the possible role of the K101 residue in a cholesterol recognition/interaction amino acid consensus (CRAC) motif in transmembrane helix 2 in conferring the thermal stability of the serotonin1A receptor. Our results show that a mutation in the K101 residue leads to loss in thermal stability of the serotonin1A receptor imparted by cholesterol, independent of membrane cholesterol content. We envision that our results could have potential implications in structural biological advancements of GPCRs and design of thermally stabilized receptors for drug development.


Assuntos
Lisina , Serotonina , Serotonina/análise , Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Colesterol/química , Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Arch Biochem Biophys ; 701: 108794, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33571482

RESUMO

Biological membranes allow morphological compartmentalization of cells and represent complex micro-heterogeneous fluids exhibiting a range of dynamics. The plasma membrane occupies a central place in cellular signaling which allows the cell to perform a variety of functions. In this review, we analyze cellular signaling in a dynamic biophysical framework guided by the "mobile receptor hypothesis". We describe a variety of examples from literature in which lateral diffusion of signaling membrane proteins acts as an important determinant in the efficiency of signaling. A major focus in our review is on membrane-embedded G protein-coupled receptors (GPCRs) which act as cellular signaling hubs for diverse cellular functions. Taken together, we describe a dynamics-based signaling paradigm with chosen examples from literature to elucidate how such a paradigm helps us understand signaling by GPCRs, maintenance of cellular polarity in yeast and infection by pathogens. We envision that with further technological advancement, it would be possible to explore cellular signaling more holistically as cells undergo development, differentiation and aging, thereby providing us a robust window into the dynamics of the cellular interior and its functional correlates.


Assuntos
Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Humanos
8.
Molecules ; 26(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202630

RESUMO

Serotonin is a neurotransmitter that plays a crucial role in the regulation of several behavioral and cognitive functions by binding to a number of different serotonin receptors present on the cell surface. We report here the synthesis and characterization of several novel fluorescent analogs of serotonin in which the fluorescent NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group is covalently attached to serotonin. The fluorescent ligands compete with the serotonin1A receptor specific radiolabeled agonist for binding to the receptor. Interestingly, these fluorescent ligands display a high environmental sensitivity of their fluorescence. Importantly, the human serotonin1A receptor stably expressed in CHO-K1 cells could be specifically labeled with one of the fluorescent ligands with minimal nonspecific labeling. Interestingly, we show by spectral imaging that the NBD-labeled ligand exhibits a red edge excitation shift (REES) of 29 nm when bound to the receptor, implying that it is localized in a restricted microenvironment. Taken together, our results show that NBD-labeled serotonin analogs offer an attractive fluorescent approach for elucidating the molecular environment of the serotonin binding site in serotonin receptors. In view of the multiple roles played by the serotonergic systems in the central and peripheral nervous systems, these fluorescent ligands would be useful in future studies involving serotonin receptors.


Assuntos
Azóis/química , Membrana Celular/química , Corantes Fluorescentes/química , Nitrobenzenos/química , Receptor 5-HT1A de Serotonina/química , Animais , Células CHO , Cricetulus , Humanos , Ligantes
9.
Biophys J ; 118(4): 944-956, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31606121

RESUMO

G protein-coupled receptors (GPCRs) are important membrane proteins in higher eukaryotes that carry out a vast array of cellular signaling and act as major drug targets. The serotonin1A receptor is a prototypical member of the GPCR family and is implicated in neuropsychiatric disorders such as anxiety and depression, besides serving as an important drug target. With an overall goal of exploring the functional consequence of altered receptor dynamics, in this work, we probed the role of the actin cytoskeleton in the dynamics, ligand binding, and signaling of the serotonin1A receptor. We monitored receptor dynamics utilizing single particle tracking, which provides information on relative distribution of receptors in various diffusion modes in addition to diffusion coefficient. We show here that the short-term diffusion coefficient of the receptor increases upon actin destabilization by cytochalasin D. In addition, analysis of individual trajectories shows that there are changes in relative populations of receptors undergoing various types of diffusion upon actin destabilization. The release of dynamic constraint was evident by an increase in the radius of confinement of the receptor upon actin destabilization. The functional implication of such actin destabilization was manifested as an increase in specific agonist binding and downstream signaling, monitored by measuring reduction in cellular cAMP levels. These results bring out the interdependence of GPCR dynamics with cellular signaling.


Assuntos
Receptor 5-HT1A de Serotonina , Serotonina , Citoesqueleto de Actina , Actinas , Receptores Acoplados a Proteínas G
10.
J Membr Biol ; 253(5): 445-457, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32949248

RESUMO

The role of membrane cholesterol in modulating G protein-coupled receptor (GPCR) structure and function has emerged as a powerful theme in contemporary biology. In this paper, we report the subtlety and stringency involved in the interaction of sterols with the serotonin1A receptor. For this, we utilized two immediate biosynthetic precursors of cholesterol, 7-dehydrocholesterol (7-DHC) and desmosterol, which differ with cholesterol merely in a double bond in their chemical structures in a position-dependent manner. We show that whereas 7-DHC could not support the ligand binding function of the serotonin1A receptor in live cells, desmosterol could partially support it. Importantly, depletion and enrichment of membrane cholesterol over basal level resulted in an increase and reduction of the basal receptor activity, respectively. These results demonstrate the relevance of optimal membrane cholesterol in maintaining the activity of the serotonin1A receptor, thereby elucidating the relevance of cellular cholesterol homeostasis.


Assuntos
Colesterol/química , Colesterol/metabolismo , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Células Cultivadas , Desmosterol/metabolismo , Humanos , Ligantes , Lipídeos de Membrana/metabolismo , Redes e Vias Metabólicas , Ligação Proteica , Relação Estrutura-Atividade
11.
Biochemistry ; 58(22): 2628-2641, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30896156

RESUMO

G protein-coupled receptors (GPCRs) represent the largest class of receptors involved in signal transduction across cell membranes and are major drug targets in all clinical areas. Endocytosis of GPCRs offers a regulatory mechanism for sustaining their signaling within a stringent spatiotemporal regime. In this work, we explored agonist-induced endocytosis of the human serotonin1A receptor stably expressed in HEK-293 cells and the cellular machinery involved in receptor internalization and intracellular trafficking. The serotonin1A receptor is a popular GPCR implicated in neuropsychiatric disorders such as anxiety and depression and serves as an important drug target. In spite of its pharmacological relevance, its mechanism of endocytosis and intracellular trafficking is less understood. In this context, we have utilized a combination of robust population-based flow cytometric analysis and confocal microscopic imaging to address the path and fate of the serotonin1A receptor during endocytosis. Our results, utilizing inhibitors of specific endocytosis pathways and intracellular markers, show that the serotonin1A receptor undergoes endocytosis predominantly via the clathrin-mediated pathway and subsequently recycles to the plasma membrane via recycling endosomes. These results would enhance our understanding of molecular mechanisms of GPCR endocytosis and could offer novel insight into the underlying mechanism of antidepressants that act via the serotonergic pathway. In addition, our results could be relevant in understanding cell (or tissue)-specific GPCR endocytosis.


Assuntos
Endocitose/fisiologia , Transporte Proteico/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , Aminopiridinas/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Membrana Celular/metabolismo , Agonismo Inverso de Drogas , Endocitose/efeitos dos fármacos , Corantes Fluorescentes/química , Cabras , Células HEK293 , Humanos , Piperazinas/farmacologia , Piridinas/farmacologia , Coelhos , Receptor 5-HT1A de Serotonina/imunologia , Antagonistas da Serotonina/farmacologia
12.
J Biol Chem ; 293(2): 412-432, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29158264

RESUMO

ATP-binding cassette (ABC) transporters help export various substrates across the cell membrane and significantly contribute to drug resistance. However, a recent study reported an unusual case in which the loss of an ABC transporter in Candida albicans, orf19.4531 (previously named ROA1), increases resistance against antifungal azoles, which was attributed to an altered membrane potential in the mutant strain. To obtain further mechanistic insights into this phenomenon, here we confirmed that the plasma membrane-localized transporter (renamed CDR6/ROA1 for consistency with C. albicans nomenclature) could efflux xenobiotics such as berberine, rhodamine 123, and paraquat. Moreover, a CDR6/ROA1 null mutant, NKKY101, displayed increased susceptibility to these xenobiotics. Interestingly, fluorescence recovery after photobleaching (FRAP) results indicated that NKKY101 mutant cells exhibited increased plasma membrane rigidity, resulting in reduced azole accumulation and contributing to azole resistance. Transcriptional profiling revealed that ribosome biogenesis genes were significantly up-regulated in the NKKY101 mutant. As ribosome biogenesis is a well-known downstream phenomenon of target of rapamycin (TOR1) signaling, we suspected a link between ribosome biogenesis and TOR1 signaling in NKKY101. Therefore, we grew NKKY101 cells on rapamycin and observed TOR1 hyperactivation, which leads to Hsp90-dependent calcineurin stabilization and thereby increased azole resistance. This in vitro finding was supported by in vivo data from a mouse model of systemic infection in which NKKY101 cells led to higher fungal load after fluconazole challenge than wild-type cells. Taken together, our study uncovers a mechanism of azole resistance in C. albicans, involving increased membrane rigidity and TOR signaling.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Proteínas Fúngicas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Candida albicans/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Recuperação de Fluorescência Após Fotodegradação , Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
Phys Chem Chem Phys ; 21(22): 11554-11563, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31134261

RESUMO

Biological membranes are characterized by lateral inhomogeneities, termed as membrane domains, which are regions enriched with specific types of lipids and proteins. While the functional consequences of membrane domains are well understood, the physicochemical study of domains has proved to be elusive, mainly due to varying spatiotemporal scales associated with them. In this perspective, we provide an overview of representative experimental approaches based on dynamic fluorescence microscopy to analyze organization and dynamics of membrane lipids and proteins. We further elucidate variation of dynamics as a function of area of observation, a unique feature of biological membranes, and its modulation with membrane components such as cholesterol and the actin cytoskeleton. In terms of spatial resolution, we provide examples from super resolution techniques that overcome the diffraction limit encountered in conventional optical microscopes. We conclude that judicious use of a combination of approaches of varying spatiotemporal resolutions, commensurate with spatiotemporal scales of a given membrane process, would provide a comprehensive dynamic model of the biological membrane in terms of membrane organization, dynamics and function.


Assuntos
Membrana Celular/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Linhagem Celular , Membrana Celular/química , Difusão , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana , Microscopia de Fluorescência/métodos , Receptores de Superfície Celular/química , Espectrometria de Fluorescência/métodos , Fatores de Tempo
14.
ACS Chem Neurosci ; 14(20): 3855-3868, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37804226

RESUMO

Serotonin1A receptors are important neurotransmitter receptors in the G protein-coupled receptor (GPCR) family and modulate a variety of neurological, behavioral, and cognitive functions. We recently showed that chronic cholesterol depletion by statins, potent inhibitors of HMG-CoA reductase (the rate-limiting enzyme in cholesterol biosynthesis), leads to polymerization of the actin cytoskeleton that alters lateral diffusion of serotonin1A receptors. However, cellular signaling by the serotonin1A receptor under chronic cholesterol depletion remains unexplored. In this work, we explored signaling by the serotonin1A receptor under statin-treated condition. We show that cAMP signaling by the receptor is reduced upon lovastatin treatment due to reduction in cholesterol as well as polymerization of the actin cytoskeleton. To the best of our knowledge, these results constitute the first report describing the effect of chronic cholesterol depletion on the signaling of a G protein-coupled neuronal receptor. An important message arising from these results is that it is prudent to include the contribution of actin polymerization while analyzing changes in membrane protein function due to chronic cholesterol depletion by statins. Notably, our results show that whereas actin polymerization acts as a negative regulator of cAMP signaling, cholesterol could act as a positive modulator. These results assume significance in view of reports highlighting symptoms of anxiety and depression in humans upon statin administration and the role of serotonin1A receptors in anxiety and depression. Overall, these results reveal a novel role of actin polymerization induced by chronic cholesterol depletion in modulating GPCR signaling, which could act as a potential therapeutic target.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Actinas , Serotonina , Colesterol/metabolismo , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo
15.
bioRxiv ; 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37886503

RESUMO

Homeostatic control of intracellular ionic strength is essential for protein, organelle and genome function, yet mechanisms that sense and enable adaptation to ionic stress remain poorly understood in animals. We find that the transcription factor NFAT5 directly senses solution ionic strength using a C-terminal intrinsically disordered region. Both in intact cells and in a purified system, NFAT5 forms dynamic, reversible biomolecular condensates in response to increasing ionic strength. This self-associative property, conserved from insects to mammals, allows NFAT5 to accumulate in the nucleus and activate genes that restore cellular ion content. Mutations that reduce condensation or those that promote aggregation both reduce NFAT5 activity, highlighting the importance of optimally tuned associative interactions. Remarkably, human NFAT5 alone is sufficient to reconstitute a mammalian transcriptional response to ionic or hypertonic stress in yeast. Thus NFAT5 is both the sensor and effector of a cell-autonomous ionic stress response pathway in animal cells.

16.
J Phys Chem B ; 126(24): 4415-4430, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35696090

RESUMO

Biological membranes are complex organized molecular assemblies of lipids and proteins that provide cells and membrane-bound intracellular organelles their individual identities by morphological compartmentalization. Membrane dipole potential originates from the electrostatic potential difference within the membrane due to the nonrandom arrangement (orientation) of amphiphile and solvent (water) dipoles at the membrane interface. In this Feature Article, we will focus on the measurement of dipole potential using electrochromic fluorescent probes and highlight interesting applications. In addition, we will focus on ratiometric fluorescence microscopic imaging technique to measure dipole potential in cellular membranes, a technique that can be used to address novel problems in cell biology which are otherwise difficult to address using available approaches. We envision that membrane dipole potential could turn out to be a convenient tool in exploring the complex interplay between membrane lipids and proteins and could provide novel insights in membrane organization and function.


Assuntos
Bicamadas Lipídicas , Compostos de Piridínio , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Potenciais da Membrana
17.
ACS Chem Neurosci ; 13(9): 1456-1466, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467841

RESUMO

Cellular hypoxia causes numerous pathophysiological conditions associated with the disruption of oxygen homeostasis. Under oxygen-deficient conditions, cells adapt by controlling the cellular functions to facilitate the judicious use of available oxygen, such as cessation of cell growth and proliferation. In higher eukaryotes, the process of cholesterol biosynthesis is intimately coupled to the availability of oxygen, where the synthesis of one molecule of cholesterol requires 11 molecules of O2. Cholesterol is an essential component of higher eukaryotic membranes and is crucial for the physiological functions of several membrane proteins and receptors. The serotonin1A receptor, an important neurotransmitter G protein-coupled receptor associated with cognition and memory, has previously been shown to depend on cholesterol for its signaling and function. In this work, in order to explore the interdependence of oxygen levels, cholesterol biosynthesis, and the function of the serotonin1A receptor, we developed a cellular hypoxia model to explore the function of the human serotonin1A receptor heterologously expressed in Chinese hamster ovary cells. We observed cell cycle arrest at G1/S phase and the accumulation of lanosterol in cell membranes under hypoxic conditions, thereby validating our cellular model. Interestingly, we observed a significant reduction in ligand binding and disruption of downstream cAMP signaling of the serotonin1A receptor under hypoxic conditions. To the best of our knowledge, our results represent the first report linking the function of the serotonin1A receptor with hypoxia. From a broader perspective, these results contribute to our overall understanding of the molecular basis underlying neurological conditions often associated with hypoxia-induced brain dysfunction.


Assuntos
Receptor 5-HT1A de Serotonina/metabolismo , Serotonina , Animais , Células CHO , Hipóxia Celular , Colesterol/metabolismo , Cricetinae , Cricetulus , Humanos , Hipóxia , Oxigênio , Serotonina/metabolismo
18.
J Phys Chem B ; 126(35): 6682-6690, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35973070

RESUMO

G protein-coupled receptors (GPCRs) are signaling hubs in cell membranes that regulate a wide range of physiological processes and are popular drug targets. Serotonin1A receptors are important members of the GPCR family and are implicated in neuropsychiatric disorders. Cholesterol is a key constituent of higher eukaryotic membranes and is believed to contribute to the segregated distribution of membrane constituents into domains. To explore the role of cholesterol in lateral dynamics of GPCRs, we utilized single particle tracking (SPT) to monitor diffusion of serotonin1A receptors under acute and chronic cholesterol-depleted conditions. Our results show that the short-term diffusion coefficient of the receptor decreases upon cholesterol depletion, irrespective of the method of cholesterol depletion. Analysis of SPT trajectories revealed that relative populations of receptors undergoing various modes of diffusion change upon cholesterol depletion. Notably, in cholesterol-depleted cells, we observed an increase in the confined population of the receptor accompanied by a reduction in diffusion coefficient for chronic cholesterol depletion. These results are supported by our recent work and present observations that show polymerization of G-actin in response to chronic cholesterol depletion. Taken together, our results bring out the interdependence of cholesterol and actin cytoskeleton in regulating diffusion of GPCRs in membranes.


Assuntos
Receptor 5-HT1A de Serotonina , Serotonina , Membrana Celular/metabolismo , Colesterol/metabolismo , Difusão , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Imagem Individual de Molécula
19.
J Fungi (Basel) ; 8(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887407

RESUMO

In this study, we have specifically blocked a key step of sphingolipid (SL) biosynthesis in Candida glabrata by disruption of the orthologs of ScIpt1 and ScSkn1. Based on their close homology with S. cerevisiae counterparts, the proteins are predicted to catalyze the addition of a phosphorylinositol group onto mannosyl inositolphosphoryl ceramide (MIPC) to form mannosyl diinositolphosphoryl ceramide (M(IP)2C), which accounts for the majority of complex SL structures in S. cerevisiae membranes. High throughput lipidome analysis confirmed the accumulation of MIPC structures in ΔCgipt1 and ΔCgskn1 cells, albeit to lesser extent in the latter. Noticeably, ΔCgipt1 cells showed an increased susceptibility to azoles; however, ΔCgskn1 cells showed no significant changes in the drug susceptibility profiles. Interestingly, the azole susceptible phenotype of ΔCgipt1 cells seems to be independent of the ergosterol content. ΔCgipt1 cells displayed altered lipid homeostasis, increased membrane fluidity as well as high diffusion of radiolabeled fluconazole (3H-FLC), which could together influence the azole susceptibility of C. glabrata. Furthermore, in vivo experiments also confirmed compromised virulence of the ΔCgipt1 strain. Contrarily, specific functions of CgSkn1 remain unclear.

20.
Chem Phys Lipids ; 239: 105120, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34332970

RESUMO

An emerging feature of several high-resolution GPCR structures is the presence of closely bound cholesterol molecules. In this Perspective, we share the excitement of the recent advancements in GPCR structural biology. We further highlight our laboratory's journey in comprehensively elucidating functional sensitivity of GPCRs (using the serotonin1A receptor as a representative neurotransmitter GPCR) to membrane cholesterol and validation using a variety of assays and molecular dynamics simulations. Although high-resolution structures of many GPCRs have been reported in the last few years, the structure of the serotoin1A receptor proved to be elusive for a long time. Very recently the cryo-EM structure of the serotoin1A receptor displaying 10 bound cholesterol molecules has been reported. We conclude by providing a critical analysis of caveats involved in GPCR structure determination.


Assuntos
Colesterol/metabolismo , Receptores de Serotonina/metabolismo , Sítios de Ligação , Colesterol/química , Microscopia Crioeletrônica , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores de Serotonina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA