Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Am Chem Soc ; 145(29): 15896-15905, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440690

RESUMO

Finding stable analogues of three-dimensional (3D) lead halide perovskites has motivated the exploration of an ever-expanding repertoire of two-dimensional (2D) counterparts. However, the bandgap and exciton binding energy in these 2D systems are generally considerably higher than those in 3D analogues due to size and dielectric confinement. Such quantum confinements are most prominently manifested in the extreme 2D realization in (A)mPbI4 (m = 1 or 2) series of compounds with a single inorganic layer repeat unit. Here, we explore a new A-site cation, 4,4'-azopyridine (APD), whose size and hydrogen bonding properties endow the corresponding (APD)PbI4 2D compound with the lowest bandgap and exciton binding energy of all such compounds, 2.19 eV and 48 meV, respectively. (APD)PbI4 presents the first example of the ideal Pb-I-Pb bond angle of 180°, maximizing the valence and conduction bandwidths and minimizing the electron and hole effective masses. These effects coupled with a significant increase in the dielectric constant provide an explanation for the unique bandgap and exciton binding energies in this system. Our theoretical results further reveal that the requirement of optimizing the hydrogen bonding interactions between the organic and the inorganic units provides the driving force for achieving the structural uniqueness and the associated optoelectronic properties in this system. Our preliminary investigations in characterizing photovoltaic solar cells in the presence of APD show encouraging improvements in performances and stability.

2.
Inorg Chem ; 62(7): 3202-3211, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36744767

RESUMO

In the world of semiconductors, organic-inorganic hybrid (OIH) halide perovskite is a new paradigm. Recently, a zealous effort has been made to design new lead-free perovskite-like OIH halides, such as perovskitoids and antiperovskites, for optoelectronic applications. In this context, we have synthesized a perovskitoid compound (Piperidinium)MnCl3 (compound 1) crystallizing in an orthorhombic structure with infinite one-dimensional (1D) chains of MnCl6 octahedra. Interestingly, this compound shows switchable dielectric property governed by an order-disorder structural transition. By controlling the stoichiometry of piperidine, we have synthesized an antiperovskite (Piperidinium)3Cl[MnCl4] (compound 2), the inverse analogue of a perovskite, consisting of zero-dimensional (0D) MnCl4 tetrahedra. This type of organic-inorganic hybrid antiperovskite halide is unique and scarce. Such a dissimilarity in lattice dimensionality and Mn2+ ion coordination ensues fascinating photophysical and magnetic properties. Compound 1 exhibits red emission with a photoluminescence quantum yield (PLQY) of ∼28%. On the other hand, the 0D antiperovskite compound 2 displays green emission with a higher PLQY of 54.5%, thanks to the confinement effect. In addition, the dimensionality of the compounds plays a vital role in the exchange interaction. As a result, compound 1 shows an antiferromagnetic ground state, whereas compound 2 is paramagnetic down to 1.8 K. This emerging structure-property relationship in OIH manganese halides will set the platform for designing new perovskites and antiperovskites.

3.
Nano Lett ; 21(5): 2010-2017, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33617255

RESUMO

Complementary to bulk synthesis, here we propose a designer lattice with extremely high magnetic frustration and demonstrate the possible realization of a quantum spin liquid state from both experiments and theoretical calculations. In an ultrathin (111) CoCr2O4 slice composed of three triangular and one kagome cation planes, the absence of a spin ordering or freezing transition is demonstrated down to 0.03 K, in the presence of strong antiferromagnetic correlations in the energy scale of 30 K between Co and Cr sublattices, leading to the frustration factor of ∼1000. Persisting spin fluctuations are observed at low temperatures via low-energy muon spin relaxation. Our calculations further demonstrate the emergence of highly degenerate magnetic ground states at the 0 K limit, due to the competition among multiply altered exchange interactions. These results collectively indicate the realization of a proximate quantum spin liquid state on the synthetic lattice.

4.
Phys Rev Lett ; 125(11): 117206, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975979

RESUMO

We present a combination of thermodynamic and dynamic experimental signatures of a disorder driven dynamic cooperative paramagnet in a 50% site diluted triangular lattice spin-1/2 system: Y_{2}CuTiO_{6}. Magnetic ordering and spin freezing are absent down to 50 mK, far below the Curie-Weiss scale (-θ_{CW}) of ∼134 K. We observe scaling collapses of the magnetic field and temperature dependent magnetic heat capacity and magnetization data, respectively, in conformity with expectations from the random singlet physics. Our experiments establish the suppression of any freezing scale, if at all present, by more than 3 orders of magnitude, opening a plethora of interesting possibilities such as disorder stabilized long range quantum entangled ground states.

5.
Inorg Chem ; 57(15): 9012-9019, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30036043

RESUMO

We have investigated the local environment around Mn3+ and In3+ ions in YMn1- xIn xO3 chromophores to understand the origin of the intense blue color for small values of x in these solid solutions. While X-ray diffraction results provide an average description of the trigonal bipyramidal (TBP) units about Mn/In atoms with five oxygens surrounding the cation, the X-ray absorption near edge structure (XANES) as well as extended X-ray absorption fine structure (EXAFS) of these materials clearly suggest the presence of two different TBP environments, one of which is similar to MnO5 TBP in YMnO3. EXAFS in conjunction with first-principles calculations show that replacing larger In3+ ions by smaller Mn3+ ones additionally gives rise to another TBP strongly distorted along the axial direction, expanding one of the axial Mn-O bonds by ∼11%. The relative fraction of these two environments changes in close agreement with the global stoichiometry with the elongated TBP, therefore, being dominant in the regime of the low Mn content. This local structural difference is responsible for the intense, but relatively narrow, absorption feature in the red-yellow region of the absorption spectrum, and hence YMn1- xIn xO3 appears blue for small Mn dopings. This distortion is relatively less abundant in Mn-rich compositions, and therefore, such compositions appear black, controlled by the wide absorption feature of the trigonal bipyramid coordination with Mn-O bond lengths that are essentially the same as those in YMnO3, covering the entire visible range. The chromophore properties are, thus, governed by the ratio of these two MnO5 TBP environments, one with a characteristic optical absorption giving it a blue color and the other absorbing over the entire visible range.

6.
Inorg Chem ; 57(21): 13443-13452, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30335991

RESUMO

Low dimensional lead halide perovskites have attracted huge research interest due to their structural diversity and remarkable photophysical properties. The ability to controllably change dimensionality/structure of perovskites remains highly challenging. Here, we report synthetic control on structure/dimensionality of ethylenediammonium (ED) lead bromide perovskite from a two dimensionally networked (2DN) sheet to a one dimensionally networked (1DN) chain structure. Intercalation of solvent molecules into the perovskite plays a crucial role in directing the final dimensionality/structure. This change in dimensionality reflects strongly in the observed differences in photophysical properties. Upon UV excitation, the 1DN structure emits white light due to easily formed " self-trapped" excitons. 2DN perovskites show band edge blue emission (∼410 nm). Interestingly, Mn2+ incorporated 2DN perovskites show a highly red-shifted Mn2+ emission peak at ∼670 nm. Such a long wavelength Mn2+ emission peak is unprecedented in the perovskite family. This report highlights the synthetic ability to control the dimensionality/structure of perovskite and consequently its photophysical properties.

7.
Angew Chem Int Ed Engl ; 56(25): 7038-7054, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28150912

RESUMO

Introducing a few atoms of impurities or dopants in semiconductor nanocrystals can drastically alter the existing properties or even introduce new properties. For example, mid-gap states created by doping tremendously affect photocatalytic activities and surface controlled redox reactions, generate new emission centers, show thermometric optical switching, make FRET donors by enhancing the excited state lifetime, and also create localized surface plasmon resonance induced low energy absorption. In addition, researchers have more recently started focusing their attention on doped nanocrystals as an important and alternative material for solar energy conversion to meet the current demand for renewable energy. Moreover, the electrical and magnetic properties of the host are also strongly altered on doping. These beneficial dopant-induced changes suggest that doped nanocrystals with proper selections of dopant-host pairs may be helpful for generating designer materials for a wide range of current technological needs. How properties relate to the doping of a variety of semiconductor nanocrystals are summarized in this Review.

8.
Phys Rev Lett ; 117(17): 177001, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27824469

RESUMO

Combining multiple emergent correlated properties such as superconductivity and magnetism within the topological matrix can have exceptional consequences in garnering new and exotic physics. Here, we study the topological surface states from a noncentrosymmetric α-BiPd superconductor by employing angle-resolved photoemission spectroscopy and first-principles calculations. We observe that the Dirac surface states of this system have several interesting and unusual properties, compared to other topological surface states. The surface state is strongly anisotropic and the in-plane Fermi velocity varies rigorously on rotating the crystal about the y axis. Moreover, it acquires an unusual band gap as a function of k_{y}, possibly due to hybridization with bulk bands, detected upon varying the excitation energy. The coexistence of all the functional properties in addition to the unusual surface state characteristics make this an interesting material.

9.
Phys Rev Lett ; 116(9): 097205, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26991199

RESUMO

We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba_{3}ZnIr_{2}O_{9} is a realization of a novel spin-orbital liquid state. Our results reveal that Ba_{3}ZnIr_{2}O_{9} with Ir^{5+} (5d^{4}) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J=0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir_{2}O_{9} dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK.

10.
Chemphyschem ; 17(5): 710-6, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26710967

RESUMO

Sn(4+) -doped In2 O3 (ITO) is a benchmark transparent conducting oxide material. We prepared ligand-free but colloidal ITO (8 nm, 10 % Sn(4+) ) nanocrystals (NCs) by using a post-synthesis surface-modification reaction. (CH3 )3 OBF4 removes the native oleylamine ligand from NC surfaces to give ligand-free, positively charged NCs that form a colloidal dispersion in polar solvents. Both oleylamine-capped and ligand-free ITO NCs exhibit intense absorption peaks, due to localized surface plasmon resonance (LSPR) at around λ=1950 nm. Compared with oleylamine-capped NCs, the electrical resistivity of ligand-free ITO NCs is lower by an order of magnitude (≈35 mΩ cm(-1) ). Resistivity over a wide range of temperatures can be consistently described as a composite of metallic ITO grains embedded in an insulating matrix by using a simple equivalent circuit, which provides an insight into the conduction mechanism in these systems.

11.
J Chem Phys ; 143(16): 164701, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26520537

RESUMO

Semiconducting nanocrystals (NCs) have become one of the leading materials in a variety of applications, mainly due to their size tunable band gap and high intensity emission. Their photoluminescence (PL) properties can be notably improved by capping the nanocrystals with a shell of another semiconductor, making core-shell structures. We focus our study on the CdS/ZnS core-shell nanocrystals that are closely related to extensively studied CdSe/CdS NCs, albeit exhibiting rather different photoluminescence properties. We employ density functional theory to investigate the changes in the electronic and optical properties of these nanocrystals with size, core/shell ratio, and interface structure between the core and the shell. We have found that both the lowest unoccupied eigenstate (LUES) and the highest occupied eigenstate (HOES) wavefunction (WF) are localized in the core of the NCs, with the distribution of the LUES WF being more sensitive to the size and the core/shell ratio. We show that the radiative lifetimes are increasing, and the Coulomb interaction energies decrease with increasing NC size. Furthermore, we investigated the electronic and optical properties of the NCs with different interfaces between the core and the shell and different core types. We find that the different interfaces and core types have rather small influence on the band gaps and the absorption indexes, as well as on the confinement of the HOES and LUES WFs. Also the radiative lifetimes are found to be only slightly influenced by the different structural models. In addition, we compare these results with the previous results for CdSe/CdS NCs, reflecting the different PL properties of these two types of NCs. We argue that the difference in their Coulomb interaction energies is one of the main reasons for their distinct PL properties.

12.
J Chem Phys ; 143(11): 114705, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26395726

RESUMO

The electronic structure of the (La(0.8)Sr(0.2))(0.98)Mn(1-x)Cr(x)O3 model series (x = 0, 0.05, or 0.1) was measured using soft X-ray synchrotron radiation at room and elevated temperature. O K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra showed that low-level chromium substitution of (La,Sr)MnO3 resulted in lowered hybridisation between O 2p orbitals and M 3d and M 4sp valance orbitals. Mn L3-edge resonant photoemission spectroscopy measurements indicated lowered Mn 3d-O 2p hybridisation with chromium substitution. Deconvolution of O K-edge NEXAFS spectra took into account the effects of exchange and crystal field splitting and included a novel approach whereby the pre-peak region was described using the nominally filled t(2g) ↑ state. 10% chromium substitution resulted in a 0.17 eV lowering in the energy of the t(2g) ↑ state, which appears to provide an explanation for the 0.15 eV rise in activation energy for the oxygen reduction reaction, while decreased overlap between hybrid O 2p-Mn 3d states was in qualitative agreement with lowered electronic conductivity. An orbital-level understanding of the thermodynamically predicted solid oxide fuel cell cathode poisoning mechanism involving low-level chromium substitution on the B-site of (La,Sr)MnO3 is presented.

13.
Angew Chem Int Ed Engl ; 54(9): 2643-8, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25598442

RESUMO

Semiconductor nanocrystals (NCs) possess high photoluminescence (PL) typically in the solution phase. In contrary, PL rapidly quenches in the solid state. Efficient solid state luminescence can be achieved by inducing a large Stokes shift. Here we report on a novel synthesis of compositionally controlled CuCdS NCs in air avoiding the usual complexity of using inert atmosphere. These NCs show long-range color tunability over the entire visible range with a remarkable Stokes shift up to about 1.25 eV. Overcoating the NCs leads to a high solid-state PL quantum yield (QY) of ca. 55% measured by using an integrating sphere. Unique charge carrier recombination mechanisms have been recognized from the NCs, which are correlated to the internal NC structure probed by using extended X-ray absorption fine structure (EXAFS) spectroscopy. EXAFS measurements show a Cu-rich surface and Cd-rich interior with 46% Cu(I) being randomly distributed within 84% of the NC volume creating additional transition states for PL. Color-tunable solid-state luminescence remains stable in air enabling fabrication of light-emitting diodes (LEDs).

14.
Phys Chem Chem Phys ; 16(11): 5276-83, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24496476

RESUMO

Enzymatic regulation is a fast and reliable diagnosis tool via identification and design of inhibitors for modulation of enzyme function. Previous reports on quantum dots (QDs)-enzyme interactions reveal a protein-surface recognition ability leading to promising applications in protein stabilization, protein delivery, bio-sensing and detection. However, the direct use of QDs to control enzyme inhibition has never been revealed to date. Here we show that a series of biocompatible surface-functionalized metal-chalcogenide QDs can be used as potent inhibitors for malignant cells through the modulation of enzyme activity, while normal cells remain unaffected. The in vitro activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme involved critically in the glycolysis of cancer cells, is inactivated selectively in a controlled way by the QDs at a significantly low concentration (nM). Cumulative kinetic studies delineate that the QDs undergo both reversible and irreversible inhibition mechanisms owing to the site-specific interactions, enabling control over the inhibition kinetics. These complementary loss-of-function probes may offer a novel route for rapid clinical diagnosis of malignant cells and biomedical applications.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Pontos Quânticos , Animais , Materiais Biocompatíveis , Glicólise , Xenoenxertos , Camundongos , Sarcoma/patologia
15.
Nano Lett ; 13(2): 409-15, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23297701

RESUMO

Two-dimensional (2D) sheets are currently in the spotlight of nanotechnology owing to high-performance device fabrication possibilities. Building a free-standing quantum sheet with controlled morphology is challenging when large planar geometry and ultranarrow thickness are simultaneously concerned. Coalescence of nanowires into large single-crystalline sheet is a promising approach leading to large, molecularly thick 2D sheets with controlled planar morphology. Here we report on a bottom-up approach to fabricate high-quality ultrathin 2D single crystalline sheets with well-defined rectangular morphology via collective coalescence of PbS nanowires. The ultrathin sheets are strictly rectangular with 1.8 nm thickness, 200-250 nm width, and 3-20 µm length. The sheets show high electrical conductivity at room and cryogenic temperatures upon device fabrication. Density functional theory (DFT) calculations reveal that a single row of delocalized orbitals of a nanowire is gradually converted into several parallel conduction channels upon sheet formation, which enable superior in-plane carrier conduction.


Assuntos
Chumbo/química , Nanofios/química , Sulfetos/química , Nanotecnologia , Teoria Quântica
16.
J Phys Chem Lett ; 15(11): 3061-3070, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38466659

RESUMO

Stereochemically active lone pair (SCALP) cations are attractive units for realizing optical anisotropy. Antimony(III) chloride perovskites with the SCALP have remained largely unknown to date. We synthesized a new vacancy ordered Cs3Sb2Cl9 perovskite single crystals with SbCl6 octahedral linkage containing the SCALP. Remarkably, all-inorganic halide perovskite Cs3Sb2Cl9 single crystals exhibit an exceptional birefringence of 0.12 ± 0.01 at 550 nm. The SCALP brings a large local structural distortion of the SbCl6 octahedra promoting birefringence optical responses in Cs3Sb2Cl9 single crystals. Theoretical calculations reveal that the considerable hybridization of Sb 5s and 5p with Cl 3p states largely contribute to the SCALP. Furthermore, the change in the Sb-Cl-Sb bond angle creates distortion in the SbCl6 octahedral arrangement in the apical and equatorial directions within the crystal structure incorporating the required anisotropy for the birefringence. This work explores pristine inorganic halide perovskite single crystals as a potential birefringent material with prospects in integrated optical devices.

17.
Phys Rev Lett ; 110(26): 267401, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848921

RESUMO

Extensively studied Mn-doped semiconductor nanocrystals have invariably exhibited photoluminescence over a narrow energy window of width ≤150 meV in the orange-red region and a surprisingly large spectral width (≥180 meV), contrary to its presumed atomic-like origin. Carrying out emission measurements on individual single nanocrystals and supported by ab initio calculations, we show that Mn PL emission, in fact, can (i) vary over a much wider range (∼370 meV) covering the deep green--deep red region and (ii) exhibit widths substantially lower (∼60-75 meV) than reported so far, opening newer application possibilities and requiring a fundamental shift in our perception of the emission from Mn-doped semiconductor nanocrystals.

18.
Nat Commun ; 14(1): 6210, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798279

RESUMO

Correlated electron materials (CEMs) host a rich variety of condensed matter phases. Vanadium dioxide (VO2) is a prototypical CEM with a temperature-dependent metal-to-insulator (MIT) transition with a concomitant crystal symmetry change. External control of MIT in VO2-especially without inducing structural changes-has been a long-standing challenge. In this work, we design and synthesize modulation-doped VO2-based thin film heterostructures that closely emulate a textbook example of filling control in a correlated electron insulator. Using a combination of charge transport, hard X-ray photoelectron spectroscopy, and structural characterization, we show that the insulating state can be doped to achieve carrier densities greater than 5 × 1021 cm-3 without inducing any measurable structural changes. We find that the MIT temperature (TMIT) continuously decreases with increasing carrier concentration. Remarkably, the insulating state is robust even at doping concentrations as high as ~0.2 e-/vanadium. Finally, our work reveals modulation-doping as a viable method for electronic control of phase transitions in correlated electron oxides with the potential for use in future devices based on electric-field controlled phase transitions.

19.
Phys Rev Lett ; 108(12): 127201, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22540618

RESUMO

We report magnetic, dielectric, and magnetodielectric responses of the pure monoclinic bulk phase of partially disordered La2NiMnO6, exhibiting a spectrum of unusual properties and establish that this compound is an intrinsically multiglass system with a large magnetodielectric coupling (8%-20%) over a wide range of temperatures (150-300 K). Specifically, our results establish a unique way to obtain colossal magnetodielectricity, independent of any striction effects, by engineering the asymmetric hopping contribution to the dielectric constant via the tuning of the relative-spin orientations between neighboring magnetic ions in a transition-metal oxide system. We discuss the role of antisite (Ni-Mn) disorder in emergence of these unusual properties.

20.
J Am Chem Soc ; 133(6): 1666-9, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21265549

RESUMO

We report a reversible phase transformation of platelet-shaped ZnS nanostructures between wurtzite (WZ) and zinc blende (ZB) phases by reversible insertion/ejection of dopant Mn(II) ions induced by a thermocyclic process. In a reaction flask loaded with WZ ZnS platelets and Mn molecular precursors, during heating Mn ions are incorporated and change the phase of the host nanostructures to ZB; during cooling Mn ions are spontaneously ejected, returning the host nanoplatelets to the original WZ phase. These reversible changes are monitored for several cycles with PL, EPR, XRD, and HRTEM. Interestingly, the (0001) WZ platelets transform to (110) ZB following a nucleation and growth process triggered by a local increase/depletion of the Mn(2+) concentration in the nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA