Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37781577

RESUMO

Phosphatase and tensin homolog (PTEN) modulates intracellular survival and differentiation signaling pathways downstream of neurotrophin receptors in the developing peripheral nervous system (PNS). Although well-studied in the context of brain development, our understanding of the in vivo role of PTEN in the PNS is limited to models of neuropathic pain and nerve injury. Here, we assessed how alterations in PTEN signaling affects the development of peripheral somatosensory circuits. We found that sensory neurons within the dorsal root ganglia (DRG) in Pten heterozygous ( Pten Het ) mice exhibit defects in neuronal subtype diversification. Abnormal DRG differentiation in Pten Het mice arises early in development, with subsets of neurons expressing both progenitor and neuronal markers. DRGs in Pten Het mice show dysregulation of both mTOR and GSK-3ß signaling pathways downstream of PTEN. Finally, we show that mice with an autism-associated mutation in Pten ( Pten Y68H/+ ) show abnormal DRG development. Thus, we have discovered a crucial role for PTEN signaling in the intrinsic diversification of primary sensory neuron populations in the DRG during development.

2.
Mol Autism ; 12(1): 41, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088332

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) has a strong genetic etiology. Germline mutation in the tumor suppressor gene PTEN is one of the best described monogenic risk cases for ASD. Animal modeling of cell-specific Pten loss or mutation has provided insight into how disruptions to the function of PTEN affect neurodevelopment, neurobiology, and social behavior. As such, there is a growing need to understand more about how various aspects of PTEN activity and cell-compartment-specific functions, contribute to certain neurological or behavior phenotypes. METHODS: To understand more about the relationship between Pten localization and downstream effects on neurophenotypes, we generated the nuclear-predominant PtenY68H/+ mouse, which is identical to the genotype of some PTEN-ASD individuals. We subjected the PtenY68H/+ mouse to morphological and behavioral phenotyping, including the three-chamber sociability, open field, rotarod, and marble burying tests. We subsequently performed in vivo and in vitro cellular phenotyping and concluded the work with a transcriptomic survey of the PtenY68H/+ cortex, which profiled gene expression. RESULTS: We observe a significant increase in P-Akt downstream of canonical Pten signaling, macrocephaly, decreased sociability, decreased preference for novel social stimuli, increased repetitive behavior, and increased thigmotaxis in PtenY68H/+ six-week-old (P40) mice. In addition, we found significant microglial activation with increased expression of complement and neuroinflammatory proteins in vivo and in vitro accompanied by enhanced phagocytosis. These observations were subsequently validated with RNA-seq and qRT-PCR, which revealed overexpression of many genes involved in neuroinflammation and neuronal function, including oxytocin. Oxytocin transcript was fivefold overexpressed (P = 0.0018), and oxytocin protein was strongly overexpressed in the PtenY68H/+ hypothalamus. CONCLUSIONS: The nuclear-predominant PtenY68H/+ model has clarified that Pten dysfunction links to microglial pathology and this associates with increased Akt signaling. We also demonstrate that Pten dysfunction associates with changes in the oxytocin system, an important connection between a prominent ASD risk gene and a potent neuroendocrine regulator of social behavior. These cellular and molecular pathologies may related to the observed changes in social behavior. Ultimately, the findings from this work may reveal important biomarkers and/or novel therapeutic modalities that could be explored in individuals with germline mutations in PTEN with ASD.


Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/genética , Comportamento Animal , Modelos Animais de Doenças , Células Germinativas/metabolismo , Camundongos , Microglia/metabolismo , Neurônios/metabolismo , Comportamento Social
3.
Mol Autism ; 11(1): 43, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32487265

RESUMO

BACKGROUND: PTEN, a syndromic autism spectrum disorder (ASD) risk gene, is mutated in approximately 10% of macrocephalic ASD cases. Despite the described genetic association between PTEN and ASD and ensuing studies, we continue to have a limited understanding of how PTEN disruption drives ASD pathogenesis and maintenance. METHODS: We derived neural stem cells (NSCs) from the dentate gyrus (DG) of Ptenm3m4 mice, a model that recapitulates PTEN-ASD phenotypes. We subsequently characterized the expression of stemness factors, proliferation, and differentiation of neurons and glia in Ptenm3m4 NSCs using immunofluorescent and immunoblotting approaches. We also measured Creb phosphorylation by Western blot analysis and expression of Creb-regulated genes with qRT-PCR. RESULTS: The m3m4 mutation decreases Pten localization to the nucleus and its global expression over time. Ptenm3m4 NSCs exhibit persistent stemness characteristics associated with increased proliferation and a resistance to neuronal maturation during differentiation. Given the increased proliferation of Ptenm3m4 NSCs, a significant increase in the population of immature neurons relative to mature neurons occurs, an approximately tenfold decrease in the ratio between the homozygous mutant and wildtype. There is an opposite pattern of differentiation in some Ptenm3m4 glia, specifically an increase in astrocytes. These aberrant differentiation patterns associate with changes in Creb activation in Ptenm3m4/m3m4 NSCs. We specifically observed loss of Creb phosphorylation at S133 in Ptenm3m4/m3m4 NSCs and a subsequent decrease in expression of Creb-regulated genes important to neuronal function (i.e., Bdnf). Interestingly, Bdnf treatment is able to partially rescue the stunted neuronal maturation phenotype in Ptenm3m4/m3m4 NSCs. CONCLUSIONS: Constitutional disruption of Pten nuclear localization with subsequent global decrease in Pten expression generates abnormal patterns of differentiation, a stunting of neuronal maturation. The propensity of Pten disruption to restrain neurons to a more progenitor-like state may be an important feature contributing to PTEN-ASD pathogenesis.


Assuntos
Diferenciação Celular/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/genética , Animais , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/metabolismo , Biomarcadores , Núcleo Celular , Proliferação de Células , Autorrenovação Celular , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Mutação , Neuroglia/citologia , Neuroglia/metabolismo , PTEN Fosfo-Hidrolase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA