Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 16: 1110, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26715311

RESUMO

BACKGROUND: Drought tolerance is a complex quantitative trait that involves the coordination of a vast array of genes belonging to different pathways. To identify genes related to the drought-tolerance pathway in rice, we carried out gene-expression profiling of the leaves of near-isogenic lines (NILs) with similar genetic backgrounds and different set of QTLs but contrasting drought tolerance levels in response to long-term drought-stress treatments. This work will help differentiate mechanisms of tolerance in contrasting NILs and accelerate molecular breeding programs to improve drought tolerance in this crop. RESULTS: The two pairs of rice NILs, developed at the International Rice Research Institute, along with the drought-susceptible parent, IR64, showed distinct gene-expression profiles in leaves under different water-deficit (WD) treatments. Drought tolerance in the highly drought-tolerant NIL (DTN), IR77298-14-1-2-B-10, could be attributed to the up-regulation of genes with calcium ion binding, transferase, hydrolase and transcription factor activities, whereas in the moderate DTN, IR77298-5-6-B-18, genes with transporter, catalytic and structural molecule activities were up-regulated under WD. In IR77298-14-1-2-B-10, the induced genes were characterized by the presence of regulatory motifs in their promoters, including TGGTTAGTACC and ([CT]AAC[GT]G){2}, which are specific to the TFIIIA and Myb transcription factors, respectively. In IR77298-5-6-B-18, promoters containing a GCAC[AG][ACGT][AT]TCCC[AG]A[ACGT]G[CT] motif, common to MADS(AP1), HD-ZIP, AP2 and YABBY, were induced, suggesting that these factors may play key roles in the regulation of drought tolerance in these two DTNs under severe WD. CONCLUSIONS: We report here that the two pairs of NILs with different levels of drought tolerance may elucidate potential mechanisms and pathways through transcriptome data from leaf tissue. The present study serves as a resource for marker discovery and provides detailed insight into the gene-expression profiles of rice leaves, including the main functional categories of drought-responsive genes and the genes that are involved in drought-tolerance mechanisms, to help breeders identify candidate genes (both up- and down-regulated) associated with drought tolerance and suitable targets for manipulating the drought-tolerance trait in rice.


Assuntos
Oryza/genética , Folhas de Planta/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética
2.
J Hered ; 105(5): 723-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25124817

RESUMO

In the summer of 2012, 1 year after the nuclear accident in March 2011 at the Fukushima Daiichi nuclear power plant, we examined the effects of gamma radiation on rice at a highly contaminated field of Iitate village in Fukushima, Japan. We investigated the morphological and molecular changes on healthy rice seedlings exposed to continuous low-dose gamma radiation up to 4 µSv h(-1), about 80 times higher than natural background level. After exposure to gamma rays, expression profiles of selected genes involved in DNA replication/repair, oxidative stress, photosynthesis, and defense/stress functions were examined by RT-PCR, which revealed their differential expression in leaves in a time-dependent manner over 3 days (6, 12, 24, 48, and 72 h). For example, OsPCNA mRNA rapidly increased at 6, 12, and 24 h, suggesting that rice cells responded to radiation stress by activating a gene involved in DNA repair mechanisms. At 72 h, genes related to the phenylpropanoid pathway (OsPAL2) and cell death (OsPR1oa) were strongly induced, indicating activation of defense/stress responses. We next profiled the transcriptome using a customized rice whole-genome 4×44K DNA microarray at early (6h) and late (72 h) time periods. Low-level gamma radiation differentially regulated rice leaf gene expression (induced 4481 and suppressed 3740 at 6 h and induced 2291 and suppressed 1474 genes at 72 h) by at least 2-fold. Using the highly upregulated and downregulated gene list, MapMan bioinformatics tool generated diagrams of early and late pathways operating in cells responding to gamma ray exposure. An inventory of a large number of gamma radiation-responsive genes provides new information on novel regulatory processes in rice.


Assuntos
Acidente Nuclear de Fukushima , Raios gama/efeitos adversos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Oryza/genética , Folhas de Planta/genética , Plântula/genética , Biologia Computacional , Relação Dose-Resposta à Radiação , Japão , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/efeitos da radiação , Folhas de Planta/efeitos da radiação , Controle de Qualidade , RNA de Plantas/genética , Poluentes Radioativos/toxicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/efeitos da radiação
3.
Plant Physiol ; 158(4): 1833-46, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22353574

RESUMO

Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy.


Assuntos
Brassinosteroides/metabolismo , Giberelinas/metabolismo , Oryza/imunologia , Oryza/microbiologia , Imunidade Vegetal/imunologia , Raízes de Plantas/imunologia , Ácido Salicílico/metabolismo , Sequência de Bases , Brassinosteroides/biossíntese , Brassinosteroides/farmacologia , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Modelos Biológicos , Dados de Sequência Molecular , Oryza/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Pythium , Ácido Salicílico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Esteroides Heterocíclicos/farmacologia , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
4.
Biotechnol Lett ; 35(4): 647-56, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23264265

RESUMO

The 'ozone (O3)-responsive transcriptome' behavior in the panicles and grains of rice plant was studied individually through high-throughput oligo-DNA microarray technique. O3 differentially and separately regulated 620 and 130 genes in the panicles and grains. Among the O3-responsive genes, 176 and 444 genes were up- and down-regulated in panicle compared to 24 and 106 genes in grain, respectively. Further mapping revealed that the majority of differentially expressed genes were mainly involved in signaling, hormonal, cell wall, transcription, proteolysis, and defense events. Many previously unknown O3-responsive novel genes were identified. Inventory of 745 O3-responsive genes and their mapping will expand our knowledge on novel regulatory processes in both panicles and grains of rice; and, serve as a resource towards the designing of rice crops for future high-O3world. PURPOSE OF WORK: Tropospheric ozone (O3) severely affects agricultural production worldwide. Present study aims to reveal a detailed O3 responsive gene network in panicle and grains of rice plants through transcriptomics approach. Our results provide an insight into the basis of O3-response in rice plants, and will help to develop suitable rice genotype for future high O3- world.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/efeitos dos fármacos , Ozônio/toxicidade , Sementes/efeitos dos fármacos , Estresse Fisiológico , Transcriptoma , Análise em Microsséries
5.
Nutrients ; 15(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839223

RESUMO

Presenteeism is a problem that needs to be solved urgently, both for individual workers and for society overall. In this report, we propose the concept of MHC, which refers to mild mental and physical complaints subjectively perceived by individuals that are not caused by illness. We also planned to examine what kind of physical and mental disorder MHC is and whether food is effective as a method of self-care for MHC. First, we conducted "the comprehensive survey to establish an integrated database of food, gut microbiome, and health information" (the "Sukoyaka Health Survey") and obtained data on psychosomatic disorders and intakes of dietary nutrients. As a result, through factor analysis and item response theory analysis, we found the following specific examples of MHC: lack of vigor, irritability, fatigue, and somatic complaints. In addition, analysis of the relationship between these four MHC levels and the intake dietary nutrients indicated that they are closely related and that MHC levels can be improved by consuming sufficient amounts of multiple nutrients.


Assuntos
Dieta , Transtornos Mentais , Humanos , Nutrientes , Alimentos , Inquéritos e Questionários
6.
Biochem Biophys Res Commun ; 423(2): 417-23, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22683629

RESUMO

Thioredoxin (TRX) is a multi-functional redox protein. Genome-wide survey and expression profiles of different stresses were observed. Conserved amino acid residues and phylogeny construction using the OsTRX conserved domain sequence suggest that the TRX gene family can be classified broadly into six subfamilies in rice. We compared potential gene birth-and-death events in the OsTRX genes. The Ka/Ks ratio is a measure to explore the mechanism and 3 evolutionary stages of the OsTRX genes divergence after duplication. We used 270 TRX genes from monocots and eudicots for synteny analysis. Furthermore, we investigated expression profiles of this gene family under 5 biotic and 3 abiotic stresses. Several genes were differentially expressed with high levels of expression and exhibited subfunctionalization and neofunctionalization after the duplication event response to different stresses, which provides novel reference for the cloning of the most promising candidate genes from OsTRX gene family for further functional analysis.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Oryza/genética , Estresse Fisiológico/genética , Tiorredoxinas/genética , Evolução Molecular , Duplicação Gênica , Perfilação da Expressão Gênica
7.
Mol Genet Genomics ; 287(5): 389-410, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22526427

RESUMO

The NAC (NAM, ATAF1/2 and CUC2) genes are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. We describe the rice (Oryza sativa) OsNAC genes expression profiles (GEPs) under normal and water-deficit treatments (WDTs). The GEPs of the OsNAC genes were analyzed in 25 tissues covering the entire life cycle of Minghui 63. High expression levels of 17 genes were demonstrated in certain tissues under normal conditions suggesting that these genes may play important roles in specific organs. We determined that 16 genes were differentially expressed under at least 1 phytohormone (NAA, GA3, KT, SA, ABA, and JA) treatment. To investigate the GEPs in the root, leaf, and panicle of three rice genotypes [e.g., 2 near-isogenic lines (NILs) and IR64], we used two NILs from a common genetic combination backcross developed by Aday Selection and IR64. WDTs were applied using the fraction of transpirable soil water at severe, mild, and control conditions. Transcriptomic analysis using a 44K oligoarray from Agilent was performed on all the tissue samples. We identified common and specific genes in all tissues from the two NILs under both WDTs, and the majority of the OsNAC genes that were activated were in the drought-tolerant IR77298-14-1-2-B-10 line compared with the drought-susceptible IR77298-14-1-2-B-13 or IR64. In IR77298-14-1-2-B-10, seventeen genes were very specific in their expression levels. Approximately 70 % of the genes from subgroups SNAC and NAM/CUC3 were activated in the leaf, but 37 % genes from subgroup SND were inactivated in the root compared with the control under severe stress conditions. These results provide a useful reference for the cloning of candidate genes from the specific subgroup for further functional analysis.


Assuntos
Genes de Plantas , Oryza/genética , Cruzamentos Genéticos , Secas , Topos Floridos/efeitos dos fármacos , Topos Floridos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/efeitos dos fármacos , Genes Reguladores , Teste de Complementação Genética , Modelos Genéticos , Família Multigênica/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , RNA de Plantas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética
8.
Mol Genet Genomics ; 287(1): 1-19, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22102215

RESUMO

The AP2/EREBP genes play various roles in developmental processes and in stress-related responses in plants. Genome-wide microarrays based on the gene expression profiles of the AP2/EREBP family were analyzed under conditions of normal growth and drought stress. The preferential expression of fifteen genes was observed in specific tissues, suggesting that these genes may play important roles in vegetative and reproductive stages of growth. A large number of redundant genes were differentially expressed following phytohormone treatments (NAA, GA3, KT, SA, JA, and ABA). To investigate the gene expression responses in the root, leaf, and panicle of three rice genotypes, two drought stress conditions were applied using the fraction of transpirable soil water (FTSW) under severe (0.2 FTSW), mild (0.5 FTSW), and control (1.0 FTSW) conditions. Following treatment, transcriptomic analysis using a 44-K oligoarray from Agilent was performed on all the tissue samples. We identified common and specific genes in all tissues from two near-isogenic lines, IR77298-14-1-2-B-10 (drought tolerant) and IR77298-14-1-2-B-13 (drought susceptible), under drought stress conditions. The majority of the genes that were activated in the IR77298-14-1-2-B-10 line were members of the AP2/EREBP gene family. Non-redundant genes (sixteen) were found in the drought-tolerant line, and four genes were selected as candidate novel reference genes because of their higher expression levels in IR77298-14-1-2-B-10. Most of the genes in the AP2, B3, and B5 subgroups were involved in the panicle under severe stress conditions, but genes from the B1 and B2 subgroups were down-regulated in the root. Of the four subfamilies, RAV exhibited the highest number of up-regulated genes (80%) in the panicle under severe stress conditions in the drought-tolerant line compared to Minghui 63 under normal conditions, and the gene structures of the RAV subfamily may be involved in the response to drought stress in the flowering stage. These results provide a useful reference for the cloning of candidate genes from the specific subgroup for further functional analysis.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Família Multigênica/genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Análise em Microsséries , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Locos de Características Quantitativas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Estresse Fisiológico/genética
9.
Plant Cell Physiol ; 52(2): 344-60, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21169347

RESUMO

We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication, genome localizations and expression profiles. Conserved amino acid residues and phylogeny construction using the AP2/ERF conserved domain sequence suggest that in rice the OsAP2/EREBP gene family can be classified broadly into four subfamilies [AP2, RAV (related to ABI3/VP1), DREB (dehydration-responsive element-binding protein) and ERF (ethylene-responsive factor)]. The chromosomal localizations of the OsAP2/EREBP genes indicated 20 segmental duplication events involving 40 genes; 58 redundant OsAP2/EREBP genes were involved in tandem duplication events. There were fewer introns after segmental duplication. We investigated expression profiles of this gene family under biotic stresses [infection with rice viruses such as rice stripe virus (RSV), rice tungro spherical virus (RTSV) and rice dwarf virus (RDV, three virus strains S, O and D84)], and various abiotic stresses. Symptoms of virus infection were more severe in RSV infection than in RTSV and RDV infection. Responses to biotic stresses are novel findings and these stresses enhance the ability to identify the best candidate genes for further functional analysis. The genes of subgroup B-5 were not induced under abiotic treatments whereas they were activated by the three RDV strains. None of the genes of subgroups A-3 were differentially expressed by any of the biotic stresses. Our 44K and 22K microarray results suggest that 53 and 52 non-redundant genes in this family were up-regulated in response to biotic and abiotic stresses, respectively. We further examined the stress responsiveness of most genes by reverse transcription-PCR. The study results should be useful in selecting candidate genes from specific subgroups for functional analysis.


Assuntos
Proteínas de Ligação a DNA/genética , Família Multigênica , Oryza/genética , Proteínas de Plantas/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Proteínas de Ligação a DNA/metabolismo , Bases de Dados Genéticas , Éxons , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Íntrons , Oryza/metabolismo , Oryza/virologia , Filogenia , Proteínas de Plantas/metabolismo , Vírus de Plantas/patogenicidade , Alinhamento de Sequência , Estresse Fisiológico
10.
BMC Plant Biol ; 11: 174, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22136218

RESUMO

BACKGROUND: Plant roots are important organs to uptake soil water and nutrients, perceiving and transducing of soil water deficit signals to shoot. The current knowledge of drought stress transcriptomes in rice are mostly relying on comparative studies of diverse genetic background under drought. A more reliable approach is to use near-isogenic lines (NILs) with a common genetic background but contrasting levels of resistance to drought stress under initial exposure to water deficit. Here, we examined two pairs of NILs in IR64 background with contrasting drought tolerance. We obtained gene expression profile in roots of rice NILs under different levels of drought stress help to identify genes and mechanisms involved in drought stress. RESULTS: Global gene expression analysis showed that about 55% of genes differentially expressed in roots of rice in response to drought stress treatments. The number of differentially expressed genes (DEGs) increased in NILs as the level of water deficits, increased from mild to severe condition, suggesting that more genes were affected by increasing drought stress. Gene onthology (GO) test and biological pathway analysis indicated that activated genes in the drought tolerant NILs IR77298-14-1-2-B-10 and IR77298-5-6-B-18 were mostly involved in secondary metabolism, amino acid metabolism, response to stimulus, defence response, transcription and signal transduction, and down-regulated genes were involved in photosynthesis and cell wall growth. We also observed gibberellic acid (GA) and auxin crosstalk modulating lateral root formation in the tolerant NILs. CONCLUSIONS: Transcriptome analysis on two pairs of NILs with a common genetic background (~97%) showed distinctive differences in gene expression profiles and could be effective to unravel genes involved in drought tolerance. In comparison with the moderately tolerant NIL IR77298-5-6-B-18 and other susceptible NILs, the tolerant NIL IR77298-14-1-2-B-10 showed a greater number of DEGs for cell growth, hormone biosynthesis, cellular transports, amino acid metabolism, signalling, transcription factors and carbohydrate metabolism in response to drought stress treatments. Thus, different mechanisms are achieving tolerance in the two tolerant lines.


Assuntos
Secas , Oryza/genética , Raízes de Plantas/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genótipo , Análise em Microsséries , Oryza/metabolismo , Raízes de Plantas/metabolismo , RNA de Plantas/genética , Estresse Fisiológico
11.
Mol Plant Microbe Interact ; 23(1): 29-38, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19958136

RESUMO

Rice tungro disease (RTD) is a serious constraint to rice production in South and Southeast Asia. RTD is caused by Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. Rice cv. Utri Merah is resistant to RTSV. To identify the gene or genes involved in RTSV resistance, the association of genotypic and phenotypic variations for RTSV resistance was examined in backcross populations derived from Utri Merah and rice germplasm with known RTSV resistance. Genetic analysis revealed that resistance to RTSV in Utri Merah was controlled by a single recessive gene (tsv1) mapped within an approximately 200-kb region between 22.05 and 22.25 Mb of chromosome 7. A gene for putative translation initiation factor 4G (eIF4G(tsv1)) was found in the tsv1 region. Comparison of eIF4G(tsv1) gene sequences among susceptible and resistant plants suggested the association of RTSV resistance with one of the single nucleotide polymorphism (SNP) sites found in exon 9 of the gene. Examination of the SNP site in the eIF4G(tsv1) gene among various rice plants resistant and susceptible to RTSV corroborated the association of SNP or deletions in codons for Val(1060-1061) of the predicted eIF4G(tsv1) with RTSV resistance in rice.


Assuntos
Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Oryza , Polimorfismo de Nucleotídeo Único/genética , Waikavirus/fisiologia , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Genes de Plantas/genética , Genes Recessivos/genética , Imunidade Inata/genética , Oryza/genética , Oryza/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Alinhamento de Sequência
12.
J Gen Virol ; 91(Pt 1): 294-305, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19793907

RESUMO

Rice stripe disease, caused by rice stripe virus (RSV), is one of the major virus diseases in east Asia. Rice plants infected with RSV usually show symptoms such as chlorosis, weakness, necrosis in newly emerged leaves and stunting. To reveal rice cellular systems influenced by RSV infection, temporal changes in the transcriptome of RSV-infected plants were monitored by a customized rice oligoarray system. The transcriptome changes in RSV-infected plants indicated that protein-synthesis machineries and energy production in the mitochondrion were activated by RSV infection, whereas energy production in the chloroplast and synthesis of cell-structure components were suppressed. The transcription of genes related to host-defence systems under hormone signals and those for gene silencing were not activated at the early infection phase. Together with concurrent observation of virus concentration and symptom development, such transcriptome changes in RSV-infected plants suggest that different sets of various host genes are regulated depending on the development of disease symptoms and the accumulation of RSV.


Assuntos
Regulação da Expressão Gênica , Oryza/fisiologia , Oryza/virologia , Doenças das Plantas/virologia , Tenuivirus/patogenicidade , Regulação para Baixo , Perfilação da Expressão Gênica , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Regulação para Cima
13.
Mol Plant Microbe Interact ; 22(10): 1268-81, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19737100

RESUMO

Rice tungro disease (RTD) is caused by Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus (RTBV) transmitted by green leafhoppers. Rice cv. Utri Merah is highly resistant to RTD. To define the RTD resistance of Utri Merah, near-isogenic lines (NIL, BC(5) or BC(6)) developed from Utri Merah and susceptible cv. Taichung Native 1 (TN1) were evaluated for reactions to RTSV and RTBV. TW16 is an NIL (BC(5)) resistant to RTD. RTBV was able to infect both TN1 and TW16 but the levels of RTBV were usually significantly lower in TW16 than in TN1. Infection of RTSV was confirmed in TN1 by a serological test but not in TW16. However, the global gene-expression pattern in an RTSV-resistant NIL (BC(6)), TW16-69, inoculated with RTSV indicated that RTSV can also infect the resistant NIL. Infection of RTSV in TW16 was later confirmed by reverse-transcription polymerase chain reaction but the level of RTSV was considerably lower in TW16 than in TN1. Examination for virus accumulation in another NIL (BC(6)), TW16-1029, indicated that all plants of TW16-1029 were resistant to RTSV, whereas the resistance to RTBV and symptom severity were segregating among the individual plants of TW16-1029. Collectively, these results suggest that RTD resistance of Utri Merah involves suppression of interacting RTSV and RTBV but the suppression trait for RTSV and for RTBV is inherited separately.


Assuntos
Oryza/genética , Oryza/virologia , Tungrovirus/patogenicidade , Animais , Sequência de Bases , Primers do DNA/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hemípteros/virologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Endogamia , Insetos Vetores/virologia , Oryza/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , RNA Viral/genética , Especificidade da Espécie , Supressão Genética , Tungrovirus/genética , Tungrovirus/fisiologia
14.
BMC Plant Biol ; 9: 120, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19772648

RESUMO

BACKGROUND: The WRKY transcription factor gene family has a very ancient origin and has undergone extensive duplications in the plant kingdom. Several studies have pointed out their involvement in a range of biological processes, revealing that a large number of WRKY genes are transcriptionally regulated under conditions of biotic and/or abiotic stress. To investigate the existence of WRKY co-regulatory networks in plants, a whole gene family WRKYs expression study was carried out in rice (Oryza sativa). This analysis was extended to Arabidopsis thaliana taking advantage of an extensive repository of gene expression data. RESULTS: The presented results suggested that 24 members of the rice WRKY gene family (22% of the total) were differentially-regulated in response to at least one of the stress conditions tested. We defined the existence of nine OsWRKY gene clusters comprising both phylogenetically related and unrelated genes that were significantly co-expressed, suggesting that specific sets of WRKY genes might act in co-regulatory networks. This hypothesis was tested by Pearson Correlation Coefficient analysis of the Arabidopsis WRKY gene family in a large set of Affymetrix microarray experiments. AtWRKYs were found to belong to two main co-regulatory networks (COR-A, COR-B) and two smaller ones (COR-C and COR-D), all including genes belonging to distinct phylogenetic groups. The COR-A network contained several AtWRKY genes known to be involved mostly in response to pathogens, whose physical and/or genetic interaction was experimentally proven. We also showed that specific co-regulatory networks were conserved between the two model species by identifying Arabidopsis orthologs of the co-expressed OsWRKY genes. CONCLUSION: In this work we identified sets of co-expressed WRKY genes in both rice and Arabidopsis that are functionally likely to cooperate in the same signal transduction pathways. We propose that, making use of data from co-regulatory networks, it is possible to highlight novel clusters of plant genes contributing to the same biological processes or signal transduction pathways. Our approach will contribute to unveil gene cooperation pathways not yet identified by classical genetic analyses. This information will open new routes contributing to the dissection of WRKY signal transduction pathways in plants.


Assuntos
Arabidopsis/genética , Redes Reguladoras de Genes , Família Multigênica , Oryza/genética , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Análise por Conglomerados , DNA de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Electrophoresis ; 30(8): 1259-75, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19382137

RESUMO

The effects of chronic administration of Sake (Japanese alcoholic beverage, Nihonshu) on brain and liver of female F334 (Fisher) rats were surveyed via global omic analyses using DNA microarray, 2-DE, and proton nuclear magnetic resonance. Rats weaned at 4 wk of age were given free access to Sake (15% alcohol), instead of water. At 13 months of age, and 24 h after withdrawal of Sake supply, rats were sacrificed, and the whole brain and liver tissues dissected for analyses. In general, molecular changes in brain were found to be less than those in liver. Transcriptomics data revealed 36 and 9, and 80 and 62 up- and down-regulated genes, in the brain and liver, respectively, with binding and catalytic activity gene categories the most prominently changed. Results suggested Sake-induced fragility of brain and liver toxicity/damage, though no significant abnormalities in growth were seen. At protein level, a striking decrease was found in the expression of NADH dehydrogenase (ubiquinone) Fe-S protein 1 in brain, suggesting attenuation of mitochondrial metabolism. In liver, results again suggested an attenuation of mitochondrial function and, in addition, glycoproteins with unknown function were induced at protein and gene levels, suggesting possible changes in glycoprotein binding in that organ. Metabolomic analysis of brain revealed significant increases in valine, arginine/ornithine, alanine, glutamine, and choline with decreases in isoleucine, N-acetyl aspartate, taurine, glutamate, and gamma aminobutyric acid. Our results provide a detailed inventory of molecular components of both brain and liver after Sake intake, and may help to better understand effects of chronic Sake drinking.


Assuntos
Bebidas Alcoólicas , Química Encefálica , Etanol/farmacologia , Perfilação da Expressão Gênica , Fígado/química , Fatores de Transcrição ARNTL , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Química Encefálica/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Etanol/administração & dosagem , Feminino , Regulação da Expressão Gênica , Japão , Fígado/efeitos dos fármacos , Metabolômica , Análise Multivariada , NADH Desidrogenase , Ressonância Magnética Nuclear Biomolecular , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Gravidez , Proteômica , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
16.
BMC Plant Biol ; 8: 20, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18302796

RESUMO

BACKGROUND: Information on more than 35 000 full-length Oryza sativa cDNAs, together with associated microarray gene expression data collected under various treatment conditions, has made it feasible to identify motifs that are conserved in gene promoters and may act as cis-regulatory elements with key roles under the various conditions. RESULTS: We have developed a novel tool that searches for cis-element candidates in the upstream, downstream, or coding regions of differentially regulated genes. The tool first lists cis-element candidates by motif searching based on the supposition that if there are cis-elements playing important roles in the regulation of a given set of genes, they will be statistically overrepresented and will be conserved. Then it evaluates the likelihood scores of the listed candidate motifs by association rule analysis. This strategy depends on the idea that motifs overrepresented in the promoter region could play specific roles in the regulation of expression of these genes. The tool is designed so that any biological researchers can use it easily at the publicly accessible Internet site http://hpc.irri.cgiar.org/tool/nias/ces. We evaluated the accuracy and utility of the tool by using a dataset of auxin-inducible genes that have well-studied cis-elements. The test showed the effectiveness of the tool in identifying significant relationships between cis-element candidates and related sets of genes. CONCLUSION: The tool lists possible cis-element motifs corresponding to genes of interest, and it will contribute to the deeper understanding of gene regulatory mechanisms in plants.


Assuntos
Biologia Computacional/métodos , Oryza/genética , Regiões Promotoras Genéticas/genética , Elementos Reguladores de Transcrição/genética , Sequência de Bases , DNA de Plantas/genética , Bases de Dados Factuais , Biblioteca Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
17.
Nat Commun ; 9(1): 2132, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875377

RESUMO

Abscisic acid (ABA) regulates abiotic stress and developmental responses including regulation of seed dormancy to prevent seeds from germinating under unfavorable environmental conditions. ABA HYPERSENSITIVE GERMINATION1 (AHG1) encoding a type 2C protein phosphatase (PP2C) is a central negative regulator of ABA response in germination; however, the molecular function and regulation of AHG1 remain elusive. Here we report that AHG1 interacts with DELAY OF GERMINATION1 (DOG1), which is a pivotal positive regulator in seed dormancy. DOG1 acts upstream of AHG1 and impairs the PP2C activity of AHG1 in vitro. Furthermore, DOG1 has the ability to bind heme. Binding of DOG1 to AHG1 and heme are independent processes, but both are essential for DOG1 function in vivo. Our study demonstrates that AHG1 and DOG1 constitute an important regulatory system for seed dormancy and germination by integrating multiple environmental signals, in parallel with the PYL/RCAR ABA receptor-mediated regulatory system.


Assuntos
Proteínas de Arabidopsis/genética , Germinação/genética , Fosfoproteínas Fosfatases/genética , Dormência de Plantas/genética , Sementes/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Heme/metabolismo , Mutação , Fosfoproteínas Fosfatases/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
18.
Mol Plant Microbe Interact ; 20(3): 247-54, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17378427

RESUMO

An analysis, using microarrays, of gene expression in rice plants infected with Rice dwarf virus revealed significant decreases in levels of expression of genes that are involved in the formation of cell walls, reflecting the stunted growth of diseased plants. The expression of plastid-related genes also was suppressed, as anticipated from the white chlorotic appearance of infected leaves. By contrast, the expression of defense- and stress-related genes was enhanced after viral infection. These results suggest that virus-infected rice plants attempt to survive viral infection and replication by raising the levels of expression of defense- and stress-related genes while suppressing the expression of genes required for the elongation of cells and photosynthesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oryza/genética , Doenças das Plantas/genética , Reoviridae/crescimento & desenvolvimento , Parede Celular/metabolismo , Imunidade Inata/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/metabolismo , Oryza/virologia , Doenças das Plantas/virologia , Plastídeos/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Mol Cells ; 24(3): 394-408, 2007 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-18182856

RESUMO

Several genes/QTLs governing resistance/tolerance to abiotic and biotic stresses have been reported and mapped in rice. A QTL for submergence tolerance was found to be co-located with a major QTL for broad-spectrum bacterial leaf blight (bs-blb) resistance on the long arm of chromosome 5 in indica cultivars FR13A and IET8585. Using the Nipponbare (japonica) and 93-11 (indica) genome sequences, we identified, in silico, candidate genes in the chromosomal region [Kottapalli et al. (2006)]. Transcriptional profiling of FR13A and IET8585 using a rice 22K oligo array validated the above findings. Based on in silico analysis and arraying we observed that both cultivars respond to the above stresses through a common signaling system involving protein kinases, adenosine mono phosphate kinase, leucine rich repeat, PDZ/DHR/GLGF, and response regulator receiver protein. The combined approaches suggest that transcription factor EREBP on long arm of chromosome 5 regulates both submergence tolerance and blb resistance. Pyruvate decarboxylase and alcohol dehydrogenase, co-located in the same region, are candidate downstream genes for submergence tolerance at the seedling stage, and t-snare for bs-blb resistance. We also detected up-regulation of novel defense/stress-related genes including those encoding fumaryl aceto acetate (FAA) hydrolase, scramblase, and galactose oxidase, in response to the imposed stresses.


Assuntos
Genes de Plantas , Oryza/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/patogenicidade
20.
Plant Physiol Biochem ; 45(10-11): 834-50, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17870590

RESUMO

An indica rice cultivar IET8585 (Ajaya) resists diverse races of the Xanthomonas oryzae pv oryzae pathogen attack, and is often cultivated as bacterial leaf blight (blb) resistant check in India. Earlier we reported a recessive blb resistance gene mapped to the long arm of chromosome 5 in IET8585. Recessive gene-mediated blb resistance mechanism is not yet clearly understood. Here we analyzed the transcriptional profile of the blb infected resistant cultivar by rice 22K oligo array. Microarray analysis revealed differential expression of numerous genes at both early (6 h) and late (120 h) stages of infection in the resistant IET8585 cultivar over the susceptible IR24. Some of the differential gene expressions were validated by both RT-PCR and Western blot analysis. Higher expression of ethylene response element binding protein (EREBP) transcription factor along with lower expression of alcohol dehydrogenase gene and reactive oxygen species (ROS) scavenging system may be responsible for hypersensitive cell death in the resistant cultivar upon bacterial infection. Induction of glutathione-mediated detoxification and flavonoid biosynthetic pathways along with up-regulation of defense genes during infection may inhibit pathogen spread in the host tissues. In light of this and previous studies a mechanism of recessive gene-mediated bacterial blight resistance in indica rice is discussed.


Assuntos
Perfilação da Expressão Gênica , Oryza/genética , Folhas de Planta/genética , Xanthomonas/fisiologia , Western Blotting , Regulação da Expressão Gênica de Plantas , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/metabolismo , Oryza/microbiologia , Fenótipo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA