Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(9): e23121, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37548278

RESUMO

Obesity is a global health problem caused by genetic, environmental, and psychological factors and is associated with various health disorders. As such, there is a growing focus on the prevention of obesity and related diseases. The gut microbiota plays a crucial role in these diseases and has become a therapeutic target. Prebiotics, such as poly-d-3-hydroxybutyric acid (PHB), have gained attention for their potential to alter the gut microbiota, promote beneficial bacterial growth, and alleviate obesity. In this study, we examined the prebiotic effects of PHB in obese mice. We found that, in C57BL/6N mice, PHB reduced blood lipid levels. Analysis of the intestinal microflora also revealed an increase in short-chain fatty acid-producing bacteria. When PHB was administered to obese mice, subcutaneous fat and dyslipidemia were reduced, and the number of beneficial bacteria in the intestinal microflora increased. Furthermore, fatty degradation and oxidative stress were suppressed in the liver. PHB regulates gut bacterial changes related to obesity and effectively inhibits dyslipidemia, suggesting that it could be a prebiotic agent for curing various obesity-related diseases. In summary, PHB increases the beneficial gut microbiota, leading to an alleviation of obesity-associated dyslipidemia.


Assuntos
Dislipidemias , Prebióticos , Camundongos , Animais , Ácido 3-Hidroxibutírico , Camundongos Obesos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Dislipidemias/prevenção & controle , Bactérias , Dieta Hiperlipídica
2.
FASEB J ; 37(1): e22708, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36562544

RESUMO

Inflammatory bowel disease (IBD) is a chronic persistent intestinal disorder, with ulcerative colitis and Crohn's disease being the most common. However, the physio-pathological development of IBD is still unknown. Therefore, research on the etiology and treatment of IBD has been conducted using a variety of approaches. Short-chain fatty acids such as 3-hydroxybutyrate (3-HB) are known to have various physiological activities. In particular, the production of 3-HB by the intestinal microflora is associated with the suppression of various inflammatory diseases. In this study, we investigated whether poly-D-3-hydroxybutyric acid (PHB), a polyester of 3-HB, is degraded by intestinal microbiota and works as a slow-release agent of 3-HB. Further, we examined whether PHB suppresses the pathogenesis of IBD models. As long as a PHB diet increased 3-HB concentrations in the feces and blood, PHB suppressed weight loss and histological inflammation in a dextran sulfate sodium-induced IBD model. Furthermore, PHB increased the accumulation of regulatory T cells in the rectum without affecting T cells in the spleen. These results indicate that PHB has potential applications in treating diseases related to the intestinal microbiota as a sustained 3-HB donor. We show for the first time that biodegradable polyester exhibits intestinal bacteria-mediated bioactivity toward IBD. The use of bioplastics, which are essential materials for sustainable social development, represents a novel approach to diseases related to dysbiosis, including IBD.


Assuntos
Doenças Inflamatórias Intestinais , Linfócitos T Reguladores , Humanos , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Linfócitos T Reguladores/metabolismo , Regulação para Cima , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Hidroxibutiratos/farmacologia , Poliésteres
3.
Biosci Biotechnol Biochem ; 87(3): 320-329, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36496162

RESUMO

Kusaya, a traditional Japanese fermented fish product, is known for its high preservability, as it contains natural antibiotics derived from microorganisms, and therefore molds and yeasts do not colonize it easily. In this study, the Streptomyces diastaticus strain TUA-NKU25 was isolated from Kusaya, and its growth as well as the production of antibiotics were investigated. Strain TUA-NKU25 showed advantageous growth characteristics in the presence, but not in the absence, of sodium chloride (NaCl). Antimicrobial assay, high-performance liquid chromatography, and electrospray ionization-mass spectrometry analysis showed that this strain produced surugamide A and uncharacterized antimicrobial compound(s) during growth in the presence of NaCl, suggesting that the biosynthesis of these compounds was upregulated by NaCl. Draft genomic analysis revealed that strain TUA-NKU25 possesses a surugamide biosynthetic gene cluster (sur BGC), although it is incomplete, lacking surB/surC. Phylogenetic analysis of strain TUA-NKU25 and surugamide-producing Streptomyces showed that sur BGC formed a clade distinct from other known groups.


Assuntos
Cloreto de Sódio , Streptomyces , Animais , Filogenia , Streptomyces/genética , Antibacterianos , Família Multigênica
4.
Proc Natl Acad Sci U S A ; 114(20): E4048-E4056, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28461502

RESUMO

Gaining mechanistic insight into interaction between causative factors of complex multifactorial diseases involving photoreceptor damage might aid in devising effective therapies. Oxidative stress is one of the potential unifying mechanisms for interplay between genetic and environmental factors that contribute to photoreceptor pathology. Interestingly, the transcription factor myocyte enhancer factor 2d (MEF2D) is known to be important in photoreceptor survival, as knockout of this transcription factor results in loss of photoreceptors in mice. Here, using a mild light-induced retinal degeneration model, we show that the diminished MEF2D transcriptional activity in Mef2d+/- retina is further reduced under photostimulation-induced oxidative stress. Reactive oxygen species cause an aberrant redox modification on MEF2D, consequently inhibiting transcription of its downstream target, nuclear factor (erythroid-derived 2)-like 2 (NRF2). NRF2 is a master regulator of phase II antiinflammatory and antioxidant gene expression. In the Mef2d heterozygous mouse retina, NRF2 is not up-regulated to a normal degree in the face of light-induced oxidative stress, contributing to accelerated photoreceptor cell death. Furthermore, to combat this injury, we found that activation of the endogenous NRF2 pathway using proelectrophilic drugs rescues photoreceptors from photo-induced oxidative stress and may therefore represent a viable treatment for oxidative stress-induced photoreceptor degeneration, which is thought to contribute to some forms of retinitis pigmentosa and age-related macular degeneration.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/etiologia , Abietanos , Animais , Modelos Animais de Doenças , Haploinsuficiência , Luz/efeitos adversos , Fatores de Transcrição MEF2/genética , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
5.
Anaerobe ; 57: 45-54, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30880149

RESUMO

Bifidobacterium is beneficial for host health and exhibits different O2 sensitivity levels among species or strains via unknown mechanisms. Bifidobacterium bifidum JCM1255T, a type species of Bifidobacterium, is an O2-sensitive bacterium that can grow under low-O2 (5%) conditions, and the growth of this species is inhibited under high-O2 conditions (10% ∼) with accumulation of H2O2. We previously reported that NADH or NAD(P)H oxidase-active fractions were detected during purification using microaerobically grown B. bifidum cells, and the active enzyme was purified from the NADH oxidase-active fraction. The purified enzyme was identified as b-type dihydroorotate dehydrogenase (DHODb) and characterized as a dominant H2O2 producer in B. bifidum. In this study, we performed further purification of the enzyme from the NAD(P)H oxidase-active fraction and characterized the purified enzyme as a part of the H2O2 degradation system in B. bifidum. This purified enzyme was identified as thioredoxin reductase (TrxR); the NAD(P)H oxidase activity of this enzyme was not expressed in anaerobically grown B. bifidum, and mRNA expression was induced by O2 exposure. Furthermore, the purified B. bifidum TrxR interacted with recombinant alkyl hydroperoxide reductase (rAhpC) and exhibited NAD(P)H peroxidase activity. These results suggest that TrxR responds to O2 and protects B. bifidum from oxidative stress by degrading H2O2 via the TrxR-AhpC system.


Assuntos
Bifidobacterium bifidum/enzimologia , Peróxido de Hidrogênio/metabolismo , Oxidantes/metabolismo , Peroxirredoxinas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Anaerobiose , Bifidobacterium bifidum/metabolismo , Oxigênio/metabolismo , Oxigênio/toxicidade , Tiorredoxina Dissulfeto Redutase/isolamento & purificação
6.
Biochem Biophys Res Commun ; 457(4): 718-22, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25623531

RESUMO

Seaweed-origin electrophilic compounds are proposed as a class of neuroprotective compounds that provide neuroprotection through activation of the Nrf2/ARE pathway. Electrophilic hydroquinones are of particular interest due to their ability to become electrophilic quinones upon auto-oxidation. Although many marine plants produce a variety of electrophilic compounds, the detailed mechanism of action of these compounds remain unknown. Here, we focused on the neuroprotective effects of zonarol (ZO), a para-hydroquinone-type pro-electrophilic compound from the brown algae Dictyopteris undulata. We show that ZO activates the Nrf2/ARE pathway, induces phase-2 enzymes, and protects neuronal cells from oxidative stress. ZO is the first example of a neuroprotective pro-electrophilic compound obtained from brown algae.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Phaeophyceae/química , Sesquiterpenos/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Camundongos , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Sesquiterpenos/química , Transdução de Sinais/efeitos dos fármacos
7.
Biosci Biotechnol Biochem ; 77(10): 2131-3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24096646

RESUMO

Cryptoquinone, an abietane-type diterpene para-quinone from the bark of Cryptomeria japonica has antifungal and cytotoxic activities, but its biological actions are largely unknown. In this study, we found that para-hydroquinone derivatives inhibited adipocyte differentiation. The actions might have been mediated, at least in part, by activation of the antioxidant-response element induction of phase 2 enzymes and increases in total glutathione.


Assuntos
Adipócitos/efeitos dos fármacos , Antioxidantes/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diterpenos/química , Hidroquinonas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Elementos de Resposta/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Hidroquinonas/química , Camundongos
8.
Anaerobe ; 19: 50-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23270920

RESUMO

Lacto-N-biose I (LNB) is a potential factor for the selective growth of bifidobacteria. We previously reported that the species of bifidobacteria predominant in infant intestines might use LNB. We aimed to assess the prebiotic properties of LNB in comparison to other oligosaccharides using an in vitro fermentation system. Stool samples from formula-fed infants were inoculated with media containing a sole carbon source of 1% LNB, lactulose, raffinose, galactooligosaccharide, or mannanoligosaccharides. LNB significantly increased the total bifidobacterial population similarly to other oligosaccharides, but induced a significantly higher level of Bifidobacterium bifidum in comparison to other oligosaccharides. Furthermore, significantly lower concentrations of lactic acid and significantly higher concentrations of acetic acid were produced in cultures containing LNB in comparison to cultures that contained other oligosaccharides. In conclusion, LNB might have a beneficial effect on the fecal microbiota of infants and is a potential prebiotic for application in infant foods or supplements.


Assuntos
Acetilglucosamina/análogos & derivados , Biota , Fezes/microbiologia , Metagenoma/fisiologia , Ácido Acético/metabolismo , Acetilglucosamina/metabolismo , Humanos , Lactente , Ácido Láctico/metabolismo , Leite Humano/química
9.
Trends Endocrinol Metab ; 34(7): 414-425, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37271711

RESUMO

Integrity of the microbiome is an essential element for human gut health. 3-Hydroxybutyrate (3HB) secreted into the gut lumen has gained attention as a regulator of gut physiology, including stem cell expansion. In this opinion, I propose new prebiotics leading to gut health by use of a ketone (3HB) donor. When exogenous 3HB is supplied through ketone donation, it has the potential to markedly improve gut health by altering the gut microbiome and systemic metabolic status. Poly-hydroxybutyrate (PHB) donates 3HB and primarily influences microbiota, making it an effective prebiotic for improving the gut environment. Thus, exogenous 3HB donation to the lumen of the gut may aid gut health by maintaining the integrity of microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Prebióticos , Hidroxibutiratos/metabolismo , Ácido 3-Hidroxibutírico/metabolismo
10.
Antibiotics (Basel) ; 12(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37370332

RESUMO

Zonarol, which was discovered in the brown algae Dictyopteris undulata, has antibiotic, antioxidative, anti-inflammatory, and neuroprotective hydroquinone properties. Additionally, a daily treatment of zonarol taken orally has been proven to prevent ulcerative colitis and nonalcoholic fatty liver disease in experimentally induced mice models. In this study, to elucidate the physiological behavior of zonarol in vivo, the establishment of quantitative methods for the determination of zonarol in biological samples and basic pharmacokinetics parameters after oral or intravenous administration with purified zonarol to mice were investigated. The zonarol (20-600 ng/mL) in this study was dose-dependently detected using an HPLC-FI system as a single peak on the ODS column with 80% aqueous methanol at 332 nm with an excitation of 293 nm. The pharmacokinetic parameters were derived from a non-compartment analysis of the plasma concentration of zonarol following oral or intravenous treatment in mice. The absolute bioavailability of zonarol was calculated as 25.0%. Interestingly, the maximal distribution of zonarol in the brain (2.525 ± 1.334 µg/g tissue) at 30 min was observed to be higher and slower than that in the liver and kidney at 15 min after bolus intravenous administrations to the mice (10 mg/kg BW). Based on these results, zonarol might be a candidate for a potential drug, an effective tool for drug delivery, or enhancing the treatment of cerebral disease.

11.
Biochem Biophys Res Commun ; 417(1): 294-8, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22155240

RESUMO

Phenylenediamine derivatives can function as a hydrogen donor and reportedly exert various biological actions including cytoprotective effects against oxidative stress, possibly by acting as an antioxidant. Previous studies showed that feeding of such compounds to mice reduced their body weight, but the precise mechanism remains unknown at present. Here, we found that these compounds inhibited the in vitro differentiation of mouse preadipocytes, 3T3-L1 cells, into adipocytes, suggesting that, at least in part, reduced generation of adipocytes might contribute to the observed weight loss in mice. Next, we performed array analysis and found that the expression of GDF-15/MIC-1, which is a TGFß superfamily cytokine, and Trib 3, an intracellular downstream effector of the cytokines, was up-regulated by these derivatives. Thus, we identified the compounds as inducers of GDF-15/MIC-1 and suggest that such induction may have led to inhibition of adipocyte differentiation, which could account for the weight-loss effect of these compounds.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Fator 15 de Diferenciação de Crescimento/biossíntese , Fenilenodiaminas/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia/genética , Animais , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos
12.
Biochem Biophys Res Commun ; 418(1): 22-6, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22214931

RESUMO

In the previous studies, we reported that carnosic acid (CA) protects cortical neurons by activating the Keap1/Nrf2 pathway, which activation is initiated by S-alkylation of the critical cysteine thiol of the Keap1 protein by the "electrophilic"quinone-type CA. Here, we found that the pro-electrophilic CA inhibited the in vitro lipopolysaccharide (LPS)-induced activation of cells of the mouse microglial cell line MG6. LPS induced the expression of IL-1ß and IL-6, typical inflammatory cytokines released from microglial cells. CA inhibited the NO production associated with a decrease in the level of inducible NO synthase. Neither CA nor LPS affected cell survival at the concentrations used here. These actions of CA seemed to be mediated by induction of phase 2 genes (gclc, gclm, nqo1 and xct). We propose that an inducer of phase 2 genes may be a critical regulator of microglial activation. Thus, CA is a unique pro-electrophilic compound that provides both a protective effect on neurons and an anti-inflammatory one on microglia through induction of phase 2 genes.


Assuntos
Abietanos/farmacologia , Fase G2/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/imunologia , Extratos Vegetais/farmacologia , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Linhagem Celular , Fase G2/genética , Glutamato-Cisteína Ligase/genética , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/biossíntese , Interleucina-6/antagonistas & inibidores , Interleucina-6/biossíntese , Lipopolissacarídeos/imunologia , Camundongos , NAD(P)H Desidrogenase (Quinona)/genética , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores
13.
Antioxidants (Basel) ; 11(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35052628

RESUMO

Rosemary (Rosmarinus officinalis [family Lamiaceae]), an herb of economic and gustatory repute, is employed in traditional medicines in many countries. Rosemary contains carnosic acid (CA) and carnosol (CS), abietane-type phenolic diterpenes, which account for most of its biological and pharmacological actions, although claims have also been made for contributions of another constituent, rosmarinic acid. This review focuses on the potential applications of CA and CS for Alzheimer's disease (AD), Parkinson's disease (PD), and coronavirus disease 2019 (COVID-19), in part via inhibition of the NLRP3 inflammasome. CA exerts antioxidant, anti-inflammatory, and neuroprotective effects via phase 2 enzyme induction initiated by activation of the KEAP1/NRF2 transcriptional pathway, which in turn attenuates NLRP3 activation. In addition, we propose that CA-related compounds may serve as therapeutics against the brain-related after-effects of SARS-CoV-2 infection, termed "long-COVID." One factor that contributes to COVID-19 is cytokine storm emanating from macrophages as a result of unregulated inflammation in and around lung epithelial and endovascular cells. Additionally, neurological aftereffects such as anxiety and "brain fog" are becoming a major issue for both the pandemic and post-pandemic period. Many reports hold that unregulated NLRP3 inflammasome activation may potentially contribute to the severity of COVID-19 and its aftermath. It is therefore possible that suppression of NLRP3 inflammasome activity may prove efficacious against both acute lung disease and chronic neurological after-effects. Because CA has been shown to not only act systemically but also to penetrate the blood-brain barrier and reach the brain parenchyma to exert neuroprotective effects, we discuss the evidence that CA or rosemary extracts containing CA may represent an effective countermeasure against both acute and chronic pathological events initiated by SARS-CoV-2 infection as well as other chronic neurodegenerative diseases including AD and PD.

14.
J Neurochem ; 119(3): 569-78, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21883218

RESUMO

Activation of the Keap1/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and consequent induction of phase 2 antioxidant enzymes is known to afford neuroprotection. Here, we present a series of novel electrophilic compounds that protect neurons via this pathway. Natural products, such as carnosic acid (CA), are present in high amounts in the herbs rosemary and sage as ortho-dihydroquinones, and have attracted particular attention because they are converted by oxidative stress to their active form (ortho-quinone species) that stimulate the Keap1/Nrf2 transcriptional pathway. Once activated, this pathway leads to the production of a series of antioxidant phase 2 enzymes. Thus, such dihydroquinones function as redox-activated 'pro-electrophiles'. Here, we explored the concept that related para-dihydroquinones represent even more effective bioactive pro-electrophiles for the induction of phase 2 enzymes without producing toxic side effects. We synthesized several novel para-hydroquinone-type pro-electrophilic compounds (designated D1 and D2) to analyze their protective mechanism. DNA microarray, PCR, and western blot analyses showed that compound D1 induced expression of heat-shock proteins (HSPs), including HSP70, HSP27, and DnaJ, in addition to phase 2 enzymes such as hemeoxygenase-1 (HO-1), NADP(H) quinine-oxidoreductase1, and the Na(+)-independent cystine/glutamate exchanger (xCT). Treatment with D1 resulted in activation of Nrf2 and heat-shock transcription factor-1 (HSF-1) transcriptional elements, thus inducing phase 2 enzymes and HSPs, respectively. In this manner, D1 protected neuronal cells from both oxidative and endoplasmic reticulum (ER)-related stress. Additionally, D1 suppressed induction of 78 kDa glucose-regulated protein (GRP78), an ER chaperone protein, and inhibited hyperoxidation of peroxiredoxin 2 (PRX2), a molecule that is in its reduced state can protect from oxidative stress. These results suggest that D1 is a novel pro-electrophilic compound that activates both the Nrf2 and HSF-1 pathways, and may thus offer protection from oxidative and ER stress.


Assuntos
Antioxidantes/metabolismo , Proteínas de Ligação a DNA/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Fármacos Neuroprotetores/farmacologia , Quinonas/farmacologia , Epitélio Pigmentado da Retina/enzimologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Antioxidantes/síntese química , Antioxidantes/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Chaperona BiP do Retículo Endoplasmático , Fatores de Transcrição de Choque Térmico , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/síntese química , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Quinonas/síntese química , Epitélio Pigmentado da Retina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
15.
Biochem Biophys Res Commun ; 415(1): 6-10, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21982768

RESUMO

Green plant-origin electrophilic compounds are a newly-recognized class of neuroprotective compounds that provide neuroprotection through activation of the Nrf2/ARE pathway. Electrophilic hydroquinones are of particular interest due to their ability to become electrophilic quinones upon auto-oxidation. Although marine organisms frequently produce a variety of electrophilic compounds, the detailed mechanisms of action of these compounds remain unknown. Here, we focused on the neuroprotective effects of strongylophorine-8 (STR8), a para-hydroquinone-type pro-electrophilic compound from the sponge Petrosia (Strongylophora) corticata. STR8 activated the Nrf2/ARE pathway, induced phase 2 enzymes, and increased glutathione, thus protecting neuronal cells from oxidative stress. Microarray analysis indicated that STR8 induced a large number of phase 2 genes, the regulation of which is controlled by the Nrf2/ARE pathway. STR8 is the first example of a neuroprotective pro-electrophilic compound from marine organisms.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Petrosia/química , Animais , Antioxidantes/farmacologia , Linhagem Celular , Humanos , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Elementos de Resposta/efeitos dos fármacos
16.
Trends Endocrinol Metab ; 32(10): 803-813, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34446347

RESUMO

Drift of oxygen concentrations in the atmosphere was one of the main drivers of the evolution of vertebrates. The drop in oxygen concentrations at the Permian-Triassic (PT) boundary may have been the biggest challenge to vertebrates. This hypoxic condition forced theropods to lose certain genes to maximize their efficiency of oxygen usage. Recent studies show that omentin and insulin-sensitive glucose transporter 4 (GLUT4) are missing in the bird genome. Since these gene products play essential roles in maintaining insulin sensitivity, this loss forced theropods to become insulin resistant. Insulin resistance may have been the key to allowing theropods to become hyperathletic under hypoxic conditions and to outcompete mammals during the Triassic period. A second challenge was the gradual increase in oxygen concentrations during the late Jurassic, Cretaceous, and Tertiary periods when reactive oxygen species (ROS) leakage from mitochondria became a problem. Since the simplest solution was the expansion of body size, some theropods became bigger to reduce ROS leakage per volume. Another solution was the development of a constitutively active countermeasure against ROS. A recent study shows that Neoaves have constitutively active nuclear factor erythroid 2-related factor 2 (NRF2) due to deletion of the C-terminal part of the KEAP1 protein, thus allowing Neoaves to express antioxidant enzymes to overcome ROS leakage.


Assuntos
Resistência à Insulina , Insulinas , Animais , Aves/metabolismo , Humanos , Resistência à Insulina/genética , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Oxigênio , Espécies Reativas de Oxigênio/metabolismo
17.
Nutrients ; 13(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34684455

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases with no approved treatment. Zonarol, an extract from brown algae, has been proven to have anti-inflammatory and antioxidant effects. In this study, we investigated the role of zonarol in the progression of methionine- and choline-deficiency (MCD) diet-induced NAFLD in mice. After oral treatment with zonarol, a lighter body weight was observed in zonarol group (ZG) mice in comparison to control group (CG) mice. The NAFLD scores of ZG mice were lower than those of CG mice. Hepatic and serum lipid levels were also lower in ZG mice with the reduced expression of lipid metabolism-related factors. Furthermore, ZG mice showed less lipid deposition, less inflammatory cell infiltration and lower inflammatory cytokine levels in comparison to CG mice. Moreover, the numbers of 8-hydroxy-20-deoxyguanosine (8-OHdG)-positive hepatocytes and levels of hepatic and serum thiobarbituric acid reactive substances (TBARS) were significantly lower in comparison to CG mice. The expression levels of nuclear factor erythroid 2 related factor 2 (Nrf2), as well as its upstream and downstream molecules, changed in ZG mice. Zonarol could prevent the progression of NAFLD by decreasing inflammatory responses, oxidative stress and improving lipid metabolism. Meanwhile the Nrf2 pathway may play an important role in these effects.


Assuntos
Deficiência de Colina/complicações , Dieta , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Substâncias Protetoras/farmacologia , Sesquiterpenos/farmacologia , Animais , Biomarcadores , Dieta/efeitos adversos , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Imuno-Histoquímica , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Modelos Biológicos , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
18.
Biosci Biotechnol Biochem ; 74(8): 1656-61, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20699581

RESUMO

The aim of the present study was to evaluate the anti-obesity activity of a probiotic bifidobacterial strain in a mouse model with obesity induced by a high-fat diet. The mice were fed a high-fat diet supplemented with Bifidobacterium breve B-3 at 10(8) or 10(9) CFU/d for 8 weeks. B. breve B-3 supplementation dose-dependently suppressed the accumulation of body weight and epididymal fat, and improved the serum levels of total cholesterol, fasting glucose and insulin. The bifidobacterial counts in the caecal contents and feces were significantly increased with the B. breve B-3 administration. The expression of genes related to fat metabolism and insulin sensitivity in the gut and epididymal fat tissue was up-regulated by this administration. These results suggest that the use of B. breve B-3 would be effective in reducing the risk of obesity.


Assuntos
Bifidobacterium/fisiologia , Gorduras na Dieta/efeitos adversos , Obesidade/etiologia , Obesidade/microbiologia , Probióticos/farmacologia , Tecido Adiposo/metabolismo , Tecido Adiposo/microbiologia , Administração Oral , Animais , Ceco/microbiologia , Modelos Animais de Doenças , Epididimo/microbiologia , Fezes/microbiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência à Insulina , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Metabolismo dos Lipídeos/genética , Masculino , Metagenoma , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/imunologia , Obesidade/metabolismo , Probióticos/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Testes Sorológicos
19.
Planta Med ; 76(7): 683-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19941258

RESUMO

In our previous studies, we have reported that carnosic acid (CA) and carnosol (CS) originating from rosemary protects cortical neurons by inducing phase 2 enzymes, the induction of which was initiated by activation of the Keap1/Nrf2 pathway , , . In the present study we address the nature of the effector of these neuroprotective effects downstream of the phase 2 enzyme induction. From our results we conclude that activated glutathione (GSH) metabolism may participate in these protective effects. First, we performed cDNA microarray analysis in order to identify the gene(s) responsible for the actions and found that various enzymes involved in the metabolism of GSH (glutathione S-transferase, alpha 4; glutathione S-transferase, alpha 2; and formylglutathione hydrolase) constituted 3 of the top 5 CA-induced genes. The other 2 genes encoded phase 2 enzymes [NAD(P)H-quinone oxidoreductase1and aldehyde dehydrogenase family 3, subfamily A1]. Next, we compared the physiologically-active compounds originating from rosemary (CA, CS, luteolin, genkwanin, rosmarinic acid, caffeic acid, and verbenone) by 3 criteria (enhancement of total glutathione levels, transcriptional activation, neuroprotective effects). By all of these criteria, CA and CS were the most active. In contrast, the other compounds were only weakly active or totally inactive. These results suggest that pro-electrophilic compounds such as CA and CS may protect cortical neurons by causing the following sequential events: S-alkylation --> activation of the Keap1/Nrf2 pathway --> transcriptional activation --> induction of phase 2 enzymes --> activation of GSH metabolism --> neuroprotection.


Assuntos
Abietanos/farmacologia , Antioxidantes/farmacologia , Glutationa/metabolismo , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Rosmarinus/química
20.
Trends Neurosci ; 30(1): 37-45, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17137643

RESUMO

The importance of phosphorylation of key threonine, serine and tyrosine residues is a well known essential feature of many signal transduction pathways. A similar, highly conserved redox reaction involving cysteine thiols is now emerging as an important regulator of protein function. An example of this redox regulation is S-nitrosylation (the transfer of a nitric oxide group to a key protein thiol). Here, we review the chemical biology of an additional class of drugs, electrophiles (electron-deficient carbon centers), that react with key protein thiols, and provide insights into a broader class of reactions implicated in redox signaling. Interestingly, certain electrophilic compounds, including endogenous metabolites and natural products, seem to have neuroprotective effects, and this has resulted in the development of neuroprotective electrophilic drugs, including prostaglandin derivatives and hydroquinones, that exert their action through activating antioxidant-signaling cascades.


Assuntos
Antioxidantes/farmacologia , Transporte de Elétrons/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Animais , Cisteína/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Humanos , Oxirredução/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/fisiologia , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA