Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 117(7): 2153-2164, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255505

RESUMO

Microbial production of mevalonate from renewable feedstock is a promising and sustainable approach for the production of value-added chemicals. We describe the metabolic engineering of Escherichia coli to enhance mevalonate production from glucose and cellobiose. First, the mevalonate-producing pathway was introduced into E. coli and the expression of the gene atoB, which encodes the gene for acetoacetyl-CoA synthetase, was increased. Then, the deletion of the pgi gene, which encodes phosphoglucose isomerase, increased the NADPH/NADP+ ratio in the cells but did not improve mevalonate production. Alternatively, to reduce flux toward the tricarboxylic acid cycle, gltA, which encodes citrate synthetase, was disrupted. The resultant strain, MGΔgltA-MV, increased levels of intracellular acetyl-CoA up to sevenfold higher than the wild-type strain. This strain produced 8.0 g/L of mevalonate from 20 g/L of glucose. We also engineered the sugar supply by displaying ß-glucosidase (BGL) on the cell surface. When cellobiose was used as carbon source, the strain lacking gnd displaying BGL efficiently consumed cellobiose and produced mevalonate at 5.7 g/L. The yield of mevalonate was 0.25 g/g glucose (1 g of cellobiose corresponds to 1.1 g of glucose). These results demonstrate the feasibility of producing mevalonate from cellobiose or cellooligosaccharides using an engineered E. coli strain.


Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Ácido Mevalônico/metabolismo , NADP/metabolismo , Escherichia coli/genética , Microbiologia Industrial/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA