Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; 233(1): 23-29, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28262946

RESUMO

Natural background radiation of Earth and cosmic rays played a relevant role during the evolution of living organisms. However, how chronic low doses of radiation can affect biological processes is still unclear. Previous data have indicated that cells grown at the Gran Sasso Underground Laboratory (LNGS, L'Aquila) of National Institute of Nuclear Physics (INFN) of Italy, where the dose rate of cosmic rays and neutrons is significantly reduced with respect to the external environment, elicited an impaired response against endogenous damage as compared to cells grown outside LNGS. This suggests that environmental radiation contributes to the development of defense mechanisms at cellular level. To further understand how environmental radiation affects metabolism of living organisms, we have recently launched the FLYINGLOW program that aims at exploiting Drosophila melanogaster as a model for evaluating the effects of low doses/dose rates of radiation at the organismal level. Here, we will present a comparative data set on lifespan, motility and fertility from different Drosophila strains grown in parallel at LNGS and in a reference laboratory at the University of L'Aquila. Our data suggest the reduced radiation environment can influence Drosophila development and, depending on the genetic background, may affect viability for several generations even when flies are moved back to normal background radiation. As flies are considered a valuable model for human biology, our results might shed some light on understanding the effect of low dose radiation also in humans.


Assuntos
Radiação de Fundo/efeitos adversos , Drosophila melanogaster/efeitos da radiação , Fertilidade/efeitos da radiação , Longevidade/efeitos da radiação , Doses de Radiação , Exposição à Radiação/efeitos adversos , Fatores Etários , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Comportamento Animal/efeitos da radiação , Radiação Cósmica/efeitos adversos , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Genótipo , Locomoção/efeitos da radiação , Masculino , Mutação , Nêutrons/efeitos adversos , Fenótipo , Proteínas Serina-Treonina Quinases
2.
Front Public Health ; 8: 594789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520915

RESUMO

Low radiation doses can affect and modulate cell responses to various stress stimuli, resulting in perturbations leading to resistance or sensitivity to damage. To explore possible mechanisms taking place at an environmental radiation exposure, we set-up twin biological models, one growing in a low radiation environment (LRE) laboratory at the Gran Sasso National Laboratory, and one growing in a reference radiation environment (RRE) laboratory at the Italian National Health Institute (Istituto Superiore di Sanità, ISS). Studies were performed on pKZ1 A11 mouse hybridoma cells, which are derived from the pKZ1 transgenic mouse model used to study the effects of low dose radiation, and focused on the analysis of cellular/molecular end-points, such as proliferation and expression of key proteins involved in stress response, apoptosis, and autophagy. Cells cultured up to 4 weeks in LRE showed no significant differences in proliferation rate compared to cells cultured in RRE. However, caspase-3 activation and PARP1 cleavage were observed in cells entering to an overgrowth state in RRE, indicating a triggering of apoptosis due to growth-stress conditions. Notably, in LRE conditions, cells responded to growth stress by switching toward autophagy. Interestingly, autophagic signaling induced by overgrowth in LRE correlated with activation of p53. Finally, the gamma component of environmental radiation did not significantly influence these biological responses since cells grown in LRE either in incubators with or without an iron shield did not modify their responses. Overall, in vitro data presented here suggest the hypothesis that environmental radiation contributes to the development and maintenance of balance and defense response in organisms.


Assuntos
Apoptose , Autofagia , Animais , Raios gama , Itália , Camundongos , Transdução de Sinais
3.
Front Public Health ; 8: 611146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365298

RESUMO

Scientific community and institutions (e. g., ICRP) consider that the Linear No-Threshold (LNT) model, which extrapolates stochastic risk at low dose/low dose rate from the risk at moderate/high doses, provides a prudent basis for practical purposes of radiological protection. However, biological low dose/dose rate responses that challenge the LNT model have been highlighted and important dowels came from radiobiology studies conducted in Deep Underground Laboratories (DULs). These extreme ultra-low radiation environments are ideal locations to conduct below-background radiobiology experiments, interesting from basic and applied science. The INFN Gran Sasso National Laboratory (LNGS) (Italy) is the site where most of the underground radiobiological data has been collected so far and where the first in vivo underground experiment was carried out using Drosophila melanogaster as model organism. Presently, many DULs around the world have implemented dedicated programs, meetings and proposals. The general message coming from studies conducted in DULs using protozoan, bacteria, mammalian cells and organisms (flies, worms, fishes) is that environmental radiation may trigger biological mechanisms that can increase the capability to cope against stress. However, several issues are still open, among them: the role of the quality of the radiation spectrum in modulating the biological response, the dependence on the biological endpoint and on the model system considered, the overall effect at organism level (detrimental or beneficial). At LNGS, we recently launched the RENOIR experiment aimed at improving knowledge on the environmental radiation spectrum and to investigate the specific role of the gamma component on the biological response of Drosophila melanogaster.


Assuntos
Laboratórios , Proteção Radiológica , Animais , Drosophila melanogaster , Itália , Radiobiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA