RESUMO
Today, inactivity and high-calorie diets contribute to the development of obesity and premature aging. In addition, the population of elderly people is growing due to improvements in healthcare management. Obesity and aging are together key risk factors for non-communicable diseases associated with several co-morbidities and increased mortality, with a major impact on skeletal muscle defect and/or poor muscle mass quality. Skeletal muscles contribute to multiple body functions and play a vital role throughout the day, in all our activities. In our society, limiting skeletal muscle deterioration, frailty and dependence is not only a major public health challenge but also a major socio-economic issue. Specific diet supplementation with natural chemical compounds such as grape polyphenols had shown to play a relevant and direct role in regulating metabolic and molecular pathways involved in the prevention and treatment of obesity and aging and their related muscle comorbidities in cell culture and animal studies. However, clinical studies aiming to restore skeletal muscle mass and function with nutritional grape polyphenols supplementation are still very scarce. There is an urgent need for clinical studies to validate the very encouraging results observed in animal models.
Assuntos
Sarcopenia , Vitis , Idoso , Envelhecimento/fisiologia , Animais , Humanos , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Polifenóis/metabolismo , Polifenóis/farmacologia , Polifenóis/uso terapêuticoRESUMO
Dehydrodicatechins resulting from (epi)catechin oxidation have been investigated in different foods and natural products, but they still offer some analytical challenges. The purpose of this research is to develop a method using ultra-high performance liquid chromatography coupled with trapped ion mobility spectrometry and tandem mass spectrometry (UHPLC-ESI-TIMS-QTOF-MS/MS) to improve the characterization of dehydrodicatechins from model solutions (oxidation dimers of (+)-catechin and/or (-)-epicatechin). Approximately 30 dehydrodicatechins were detected in the model solutions, including dehydrodicatechins B with ß and ε-interflavanic configurations and dehydrodicatechins A with γ-configuration. A total of 11 dehydrodicatechins B, based on (-)-epicatechin, (+)-catechin, or both, were tentatively identified in a grape seed extract. All of them were of ß-configuration, except for one compound that was of ε-configuration. TIMS allowed the mobility separation of chromatographically coeluted isomers including dehydrodicatechins and procyanidins with similar MS/MS fragmentation patterns that would hardly be distinguished by LC-MS/MS alone, which demonstrates the superiority of TIMS added to LC-MS/MS for these kinds of compounds. To the best of our knowledge, this is the first time that ion mobility spectrometry (IMS) was applied to the analysis of dehydrodicatechins. This method can be adapted for other natural products.
Assuntos
Produtos Biológicos , Catequina , Catequina/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Espectrometria de Mobilidade Iônica , Polifenóis/análise , Espectrometria de Massas em TandemRESUMO
(+)-Catechin-laccase oxidation dimeric standards were hemi-synthesized using laccase from Trametes versicolor in a water-ethanol solution at pH 3.6. Eight fractions corresponding to eight potential oxidation dimeric products were detected. The fractions profiles were compared with profiles obtained with two other oxidoreductases: polyphenoloxidase extracted from grapes and laccase from Botrytis cinerea. The profiles were very similar, although some minor differences suggested possible dissimilarities in the reactivity of these enzymes. Five fractions were then isolated and analyzed by 1D and 2D NMR spectroscopy. The addition of traces of cadmium nitrate in the samples solubilized in acetone-d6 led to fully resolved NMR signals of phenolic protons, allowing the unambiguous structural determination of six reaction products, one of the fractions containing two enantiomers. These products can further be used as oxidation markers to investigate their presence and evolution in wine during winemaking and wine ageing.
Assuntos
Catequina/química , Lacase/química , Vitis/química , Biomarcadores , Botrytis/enzimologia , Botrytis/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Oxirredução , Fenóis , Polyporaceae/enzimologia , Relação Estrutura-Atividade , Trametes/enzimologia , Vitis/metabolismo , Vinho/análiseRESUMO
Glycosylated flavanols (monoglycosides and diglycosides) in skin and seed extracts of Vitis vinifera grapes grown in Castilla-La Mancha (Spain) were investigated using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-ESI-QQQ-MS/MS). Six grape varieties (Airén, Tempranillo, the recently identified Albillo Dorado, Montonera del Casar, Moribel, and Tinto Fragoso) were studied over two consecutive years (2016 and 2017). A total of twenty monomeric flavanol monoglycosides, four diglycosylated monomers, and three dimeric flavanol monoglycosides were detected in all grape samples. The diversity observed in the composition of glycosylated flavanol in the grape berries suggests a strong influence of variety and grape tissue (skin or seed). Monomeric flavanol glycosides were more abundant in grape seed extracts, in contrast with monoglycosylated dimeric forms. In addition, the glycosylated flavanol content was related to berry color in grape skins, with higher concentrations measured in black grape varieties.
Assuntos
Flavonoides/química , Glicosídeos/química , Extrato de Sementes de Uva/química , Sementes/química , Vitis/química , Cromatografia Líquida de Alta Pressão/métodos , Polifenóis/química , Espanha , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , VinhoRESUMO
Monomeric and dimeric flavanol glycosides were analyzed in Vitis vinifera grapes and seeds during ripening. An analytical method using ultra-high performance liquid chromatography coupled with a triple quadrupole mass spectrometry (UHPLC-ESI-QQQ-MS/MS) in multiple reaction monitoring (MRM) mode was employed. Three grape varieties (Merlot, Syrah and Tannat) were chosen and grape berries were sampled at different stages of development. Ten monoglycosylated and six diglycosylated flavanol monomers were detected. Twelve monoglycosylated and three diglycosylated flavanol dimers were also detected for all three grape varieties. All diglycosides were detected for the first time in Vitis vinifera grapes, though some of these compounds were only detected in skins or seeds. Furthermore, the evolution of all these compounds was studied, and a decrease in monomeric (epi) catechin monoglycosides was observed during ripening for Tannat, Merlot and Syrah grape skins. The dimers would appear to accumulate in skin tissues up to mid-summer (after veraison) and decrease when grape berries reached maturity.
Assuntos
Flavonoides/química , Glicosídeos/química , Extratos Vegetais/química , Vitis/química , Cromatografia Líquida de Alta Pressão , Extrato de Sementes de Uva/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Vinho/análiseRESUMO
Monomeric and dimeric flavanol glycosides were quantified by UHPLC-MRM in Syrah (SYR) and Grenache (GRE) grapes and in their corresponding wines for the first time. Quantities were extremely variable depending on grape tissue (seeds or skins) and during fermentation. Overall, 22 monomeric and dimeric mono- and diglycosides were determined with concentrations ranging from 0.7 nanograms to 0.700 micrograms per gram of grape tissue, and 0 to 60 micrograms per liter for wines. The evolution of the glycosides' composition during winemaking suggests that almost all these compounds originate in the grapes themselves and display different extraction kinetics during winemaking. One isomer of the monomeric (epi) flavanol monoglycosides seemed to be biosynthesized by yeasts during wine fermentation. The sharp decrease in concentration of some isomers at the late stages of fermentation or after pressing suggests that some grape glycosidase activities convert these compounds into non-glycosylated flavanols.
Assuntos
Frutas/química , Glicosídeos , Vitis/química , Vinho , Fermentação , Flavonoides/química , Glicosídeos/química , Glicosídeos/metabolismo , Sementes/química , Vinho/análiseRESUMO
This review discusses the factors that affect the concentrations of methoxypyrazines (MPs) and the techniques used to analyze MPs in grapes, musts, and wines. MPs are commonly studied pyrazines in food science due to their contribution of aroma and flavor to numerous vegetables such as peas and asparagus. They are described as highly odorous compounds with a very low olfactory threshold. The grape varietals that exhibit green or herbaceous aromas that are characteristic of MPs are predominantly Vitis vinifera cv. Cabernet Sauvignon and Sauvignon Blanc, but include others. The most extensively studied MPs include 3-isobutyl-2-methoxypyrazine, 3-isopropyl-2-methoxypyrazine, and 3-sec-butyl-2-methoxypyrazine. It outlines the significance of methoxypyrazines in grapes, musts, and wines in terms of the concentrations that are capable of contributing their sensory characteristics to wines. This review discusses methods for analyzing MPs including gas chromatography-mass spectroscopy (one or two dimension) and high-performance liquid chromatography, the appropriate extraction techniques, and the efficacy of these methods. Additionally, this review explores factors that affect pyrazine content of grapes, must, and wines, such as the effects of different viticultural practices, effects of light exposure and grape maturation, climate, soil, the multi-colored Asian lady beetle and the effects of different vinification processes.
Assuntos
Análise de Alimentos/métodos , Frutas/química , Nozes/química , Pirazinas/química , Vinho/análise , Cromatografia Líquida de Alta Pressão , Análise de Alimentos/instrumentação , Cromatografia Gasosa-Espectrometria de Massas , Pirazinas/classificaçãoRESUMO
An experiment involving the ageing of Syrah red wine was conducted over a period of 24 months, during which the impact of four different micro-agglomerated corks was examined. An untargeted UHPLC-Q-Orbitrap metabolomics analysis was performed and provided valuable insights into the chemical dynamics of red wine evolution. Forty-three specific discriminating compounds were found for non-aged wines, including various CHO and CHON-types molecules. Thirteen specific discriminating compounds were found for 24-months-aged wines including CHO, CHNOS and CHOS compounds. Among them, sulfonated flavanols and pyranoanthocyanins were identified and emerged as key molecular markers of wine ageing. This metabolomics analysis also enabled us to identify specific chemical markers of cork oxygen transfer rate (OTR) influence. Analysis revealed specific molecules linked to corks with low and high OTR such as anthocyanins and proanthocyanins respectively. This research enhances our comprehension of intricate chemical changes during red wine ageing and underscores the potential impact of cork OTR on wine composition.
RESUMO
A Syrah red wine ageing experiment was set up during 24-months and the influence of four micro-agglomerated corks were investigated. Specific phenolic ageing markers were selected and hemi-synthesized: vitisin B, malvidin-ethyl-catechin, and epicatechin-sulfonate. A targeted quantification method of these markers was then developed and validated by using ultra-high performance liquid chromatography - triple quadrupole mass spectrometry (UHPLC-QqQ-MS) operating in MRM (Multiple Reaction Monitoring). Results showed a significant decline in native grape polyphenol levels (anthocyanins, flavanols) as ageing progresses while pyranoanthocyanins, ethyl-linked pigments, and flavanol-sulfonates content increased. The cork oxygen transfer rate emerged as a pivotal factor and had significant effects on polyphenolic concentration evolution but had no significant impact on flavanol-sulfonate formation. These results provide valuable insights into the chemical evolution ongoing during wine ageing, accentuating the pivotal role of cork stopper selection in preserving wine quality over time.
Assuntos
Catequina , Vitis , Vinho , Vinho/análise , Antocianinas/análise , Vitis/química , Polifenóis/análise , Catequina/análise , Cromatografia Líquida de Alta Pressão/métodosRESUMO
Metabolic skeletal muscle (SM) dysfunction, triggered by increased oxidative stress and mitochondrial impairment, is a pivotal contributor to obesity-associated insulin resistance (IR). Addressing obesity and SM IR demands substantial lifestyle changes including regular exercise and dietary adjustments that are difficult to follow over time. This prompted exploration of alternative approaches. Grape polyphenols (GPPs) have demonstrated a positive impact on metabolism, although few studies have focused on SM. Since grape polyphenolic content and composition depend on tissue and ripening, we explored the antioxidant potential of GPPs from skin (Sk) and seeds (Sd) extracted before veraison (Bv) and at mature (M) stages, on palmitate-induced IR in primary human SM cells. Despite their important difference in polyphenol (PP) content: Sd-BvPP > Sd-MPP/Sk-BvPP > Sk-MPP, all extracts reduced lipid peroxidation by 44-60%, up-regulated the heme-oxygenase 1 protein level by 75-132% and mitochondrial activity by 47-68%. Contrary to the other extracts, which improved insulin response by 50%, Sd-BvPP did not. Our findings suggest that compounds other than stilbenoids or anthocyanin-type molecules, present only in grape Sk, could play an active role in regulating SM oxidative and metabolic stress and insulin sensitivity, paving the way for further exploration of novel bioactive compounds.
RESUMO
Red wine is a complex mixture of organic compounds including polyphenols and the use of ultra high performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight-mass spectrometry (UHPLC-ESI-Q-TOF-MS) is a promising technique to better understand its quality and authenticity. To optimize the characterization of red wine, we developed an original and fast method that represents the first shotgun polyphenomics analysis of wine. We show that our new method yields significantly more information than previous fast methods such as direct injection-ESI-MS of wine, with the identification of 103 compounds in 2 min. As a first application, we show that the use of a specific selected ion ratio demonstrates significant differences between Pinot Noir, Merlot, and Syrah wine spectra in a preliminary study.
RESUMO
RATIONALE: Stilbenoids are secondary plant metabolites responsible for the protection of multiple plant species including grape vine from bacterial and fungal infection. Red wine has been shown to be a major source of these compounds in the human diet, where they display an array of health benefits. Providing a more complete profile of the stilbenoids present in red wine, this study detects 41 stilbenoid compounds, 23 of which have never before been detected in red wine. METHODS: Red wine extracts were scanned using an ultra-high-performance liquid chromatograph coupled to a hybrid quadrupole time-of-flight mass analyzer. Multiple targeted MS/MS precursor ion scan experiments were performed using electrospray ionization operated in negative mode. Precursor ion masses were scanned for the monomeric and oligomeric stilbenoids, as well as modifications such as O-glycosylation, methoxylation and oxidation products of these compounds. Accurate mass precursor and characteristic product ions afforded partial structural elucidation and assignment of these compounds. RESULTS: A total of 41 (both known and novel) stilbenoids were detected in extracted red wine. In addition to the well-known monomeric stilbenes, several resveratrol-resveratrol homodimers (m/z 453.1344), resveratrol-piceatannol heterodimers (m/z 469.1293) and piceatannol-piceatannol homodimers (m/z 485.1236) were detected. Modified dimers of resveratrol including O-glycosylated (m/z 615.1872), methoxylated (m/z 485.1606) and oxidized (m/z 471.1449) dimers were also detected. Multiple trimers of resveratrol (m/z 679.1978) were detected for the first time in red wine, as well as some known and some novel stilbenoid tetramers (m/z 905.2604). CONCLUSIONS: In summary, 41 stilbenoids were detected in red wine, 23 for the first time. Both monomeric and oligomeric stilbenoids were partially identified and assigned by their accurate mass precursor ions and characteristic stilbenoid fragmentation patterns. Knowledge gained from these experiments contributes to a more complete understanding of the origin of the beneficial properties of red wine.
Assuntos
Estilbenos/química , Vitis/química , Vinho/análise , Cromatografia Líquida de Alta Pressão/métodos , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodosRESUMO
Fourteen Syrah red wines with different initial composition and antioxidant properties (polyphenols, antioxidant capacity, voltammetric behaviour, colour parameters and SO2) were selected. Three different accelerated ageing tests (AATs) were then performed on these wines: thermal test at 60 °C (60 °C-ATT), enzymatic test with laccase (Laccase-ATT) and chemical test with H2O2 (H2O2-ATT). The results showed high correlations between the initial phenolic composition and antioxidant properties of the samples. Partial least squares (PLS) regressions were used in order to establish some models that can predict the AATs test results based on their different initial composition and antioxidant properties. The PLS regression models had overall very good accuracy and involved different explaining variables for each test. The models taking into account all the measured parameters and the phenolic composition alone showed good predictive capacities with correlation coefficients (r2) > 0.89.
Assuntos
Antioxidantes , Vinho , Antioxidantes/química , Vinho/análise , Peróxido de Hidrogênio , Lacase , Fenóis/análiseRESUMO
Red wine is a very complex medium in which condensed tannins undergo many modifications during winemaking and bottle ageing. These reactions have an impact on the organoleptic properties. This work aimed to highlight tannins evolution related to wine evolution by studying three vintages of Syrah wines. An accelerated oxidation was also undertaken in order to evaluate the ability of this oxidation to imitate natural evolution. After chemical depolymerization of the tannins, the monitoring of 6 types of markers at two oxidation levels was investigated. An evolution of the tannin oxidation state during ageing evidenced by the increase of the markers of the second oxidation level was observed. In the 2018 oxidized wine sample, the first oxidation level markers were similar to the 2014 vintage but the second oxidation level markers were higher than other vintages, indicating a more advanced state of tannin oxidation.
Assuntos
Taninos , Vinho , Estresse Oxidativo , Espectrometria de Massas em Tandem , Taninos/química , Vinho/análiseRESUMO
B-type procyanidin dimers and (+)-catechin dimeric oxidation products were analyzed in grape seed extracts and red wines (UHPLC-Q-Orbitrap MS). The different dimers had different fragmentation patterns according to their interflavan linkage position. Oxidation dimeric compounds had a specific fragment ion at m/z 393, missing for B-Type dimers fragmentations. A fragment ion at m/z 291 occurred and was specific for oxidation dimeric compounds with a COC linkage. Higher level oxidation products had abundant specific fragments: m/z 425, 397 and 245. These fragmentations were useful to identify them in complex samples such as grape seed extracts and wines. Three grape varieties and three ripening stages were selected and the corresponding seed extracts were obtained. The analyses revealed an increasing trend for the oxidation markers during grape ripening. The analysis of Syrah wines (2018, 2014, 2010) showed a decreasing trend of these molecules during wine ageing which might be due to further oxidation.
Assuntos
Catequina , Extrato de Sementes de Uva , Vitis , Vinho , Catequina/análise , Cromatografia Líquida de Alta Pressão , Extrato de Sementes de Uva/análise , Vinho/análiseRESUMO
Two experimental Syrah red wines with different polyphenol contents were used to study the impact of acetaldehyde addition on olfactory perception. Free acetaldehyde levels were measured in red wine by Head Space-Gas Chromatography-Mass Spectrometry (HS-GC-MS) to determine the acetaldehyde combination levels for those wines. Significant differences were observed for both sensory threshold and acetaldehyde combination for the wines. A descriptive sensory analysis of the wines was then performed by using a trained panel and a Hierarchical-Check-All-That-Apply (HCATA) analysis of the wines with or without acetaldehyde addition. The results show that classical cited sensory descriptors for acetaldehyde (overripe apple and oxidized apple) varied significantly between the control wines and those with acetaldehyde addition. Non-acetaldehyde related descriptors (fresh vegetable, fresh flowers, cocoa, and meat juice) were also significantly impacted in the samples with increasing acetaldehyde additions. This suggests possible interactions between acetaldehyde and other volatile compounds that can create antagonistic or synergistic effects between the molecules or at the olfactory receptor level.
RESUMO
The C-glucosidic ellagitannins are found in wine as a result of its aging in oak barrels or in stainless steel tanks with oak chips. Once dissolved in this slightly acidic solution, the C-glucosidic ellagitannins vescalagin can react with nucleophilic entities present in red wine, such as ethanol, catechin, and epicatechin, to generate condensed hybrid products such as the ß-1-O-ethylvescalagin and the flavano-ellagitannins (acutissimin A/B and epiacutissimin A/B), respectively. During this study, we first monitored the extraction kinetic and the evolution of the eight major oak-derived C-glucosidic ellagitannins in red wines aged in oak barrels or in stainless steel tank with oak chips. Their extraction rates appeared to be faster during red wine aging in stainless steel tanks with oak chips. However, their overall concentrations in wines were found higher in the wine aged in barrels. The formation rates of the vescalagin-coupled derivatives were also estimated for the first time under both red wine aging conditions (i.e., oak barrels or stainless steel tanks with oak chips). As observed for the oak-native C-glucosidic ellagitannins, the concentrations of these vescalagin derivatives were higher in the red wine aged in oak barrels than in stainless steel tanks with oak chips. Despite these differences, their relative composition was similar under both red wine aging conditions. Finally, the impact of the oak chips size and toasting level on the C-glucosidic ellagitannins concentration in wine was also investigated.
Assuntos
Taninos Hidrolisáveis/isolamento & purificação , Vinho/análise , Manipulação de Alimentos , Taninos Hidrolisáveis/análise , Aço Inoxidável , Vitis/química , MadeiraRESUMO
In order to obtain information on the oxidative behavior of red wines, oxygen consumption rates and electrochemical changes (cyclic voltammetry) were measured for nine red wines subject to three different accelerated ageing tests: chemical (with hydrogen peroxide), enzymatic (with laccase from Trametes versicolor), and temperature (at 60 °C). Oxidative behavior depended both on the wine sample and accelerated ageing test type. A good correlation was observed between electrochemical parameters of charges for reference/non-oxidized wines, in accordance with their antioxidant capacity, and the variation of charges after enzymatic and temperature tests, meaning that cyclic voltammetry could be used in order to predict these two oxidation tests and reflect the wine sensitivity towards respective oxidation targets. However, it was not possible to predict wine chemical oxidation test based on hydrogen peroxide from the electrochemical measurements.
RESUMO
(1) Background: Both sensory quality and healthy attributes of Vitis vinifera grapes used for winemaking are closely related with the polyphenolic composition of their skins. (2) Methods: In this study, the polyphenolic characterization (flavan-3-ols, procyanidins, flavonols, stilbenes, anthocyanins) was investigated by ultra performance liquid chromatography coupled to a triple quadrupole mass spectrometer (UPLC-QqQ-MS). Skins from Vitis vinifera Merlot, Tannat, and Syrah red grape varieties cultivated in the south of France at different stages of ripening in 2018 were used. The anti-inflammatory and the antioxidant potential of the extracts were evaluated by the measure of nitric oxide (NO) and the intracellular reactive oxygen species production (ROS) in lipopolysaccharide (LPS)-stimulated macrophages. (3) Results: 41 polyphenols were quantified in all samples. Generally, the flavan-3-ol and procyanidin content decreased during ripening whereas the anthocyanins and stilbenes increased. In addition, as a novelty of this work, a wide identification and characterization of monomeric and oligomeric stilbenes was assessed by using authentic standards isolated in our laboratory, some of them (parthenocissin A and miyabenol C) reported for the first time in Merlot, Tannat and Syrah cultivars. The before-veraison skin extracts of all studied varieties, exhibited higher NO and ROS productions inhibition (>50%) proving both antioxidant and anti-inflammatory properties.
RESUMO
Skin and seed grape extracts of three red varieties (Merlot, Tannat, and Syrah) at different stages of ripening were studied for their total phenolic content (TPC) by using the Folin-Ciocalteu assay and for their total antioxidant capacity (TAC) by using spectrophotometric and electrochemical assays. Flavanol and anthocyanin compositions were also investigated using Ultra Performance Liquid Chromatography coupled with Mass Spectrometry (UPLC-MS). Results showed that seeds had the highest phenolic content and the highest antioxidant potential compared to skins at all stages of ripening. The highest TPC and TAC values were measured in seeds at close to veraison and veraison ripening stages. In skins, the highest values were found at the green stage, it was in accordance with the flavanols content. The voltammetric measurements were carried out using disposable single walled carbon nanotubes modified screen-printed carbon electrodes (SWCNT-SPCE). Three peaks on voltammograms were obtained at different oxidation potentials. The first anodic peak that oxidized at a low potential describes the oxidation of ortho-dihydroxy phenols and gallate groups, the second peak corresponds to the malvidin anthocyanins oxidation and the second oxidation of flavonoids. The third voltammetric peak could be due to phenolic acids such as p-coumaric acid and ferulic acid or the second oxidation of malvidin anthocyanins. The high linear correlation was observed between antioxidant tests and flavanols in skins (0.86 ≤ r ≤ 0.94), while in seeds, 'r' was higher between electrochemical parameters and flavanols (0.64 ≤ r ≤ 0.8).