Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(7): e1010825, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37523391

RESUMO

Finding disease-relevant tissues and cell types can facilitate the identification and investigation of functional genes and variants. In particular, cell type proportions can serve as potential disease predictive biomarkers. In this manuscript, we introduce a novel statistical framework, cell-type Wide Association Study (cWAS), that integrates genetic data with transcriptomics data to identify cell types whose genetically regulated proportions (GRPs) are disease/trait-associated. On simulated and real GWAS data, cWAS showed good statistical power with newly identified significant GRP associations in disease-associated tissues. More specifically, GRPs of endothelial and myofibroblasts in lung tissue were associated with Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease, respectively. For breast cancer, the GRP of blood CD8+ T cells was negatively associated with breast cancer (BC) risk as well as survival. Overall, cWAS is a powerful tool to reveal cell types associated with complex diseases mediated by GRPs.


Assuntos
Neoplasias da Mama , Doença Pulmonar Obstrutiva Crônica , Humanos , Feminino , Predisposição Genética para Doença , Pulmão , Perfilação da Expressão Gênica , Doença Pulmonar Obstrutiva Crônica/genética , Neoplasias da Mama/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
2.
Am J Respir Crit Care Med ; 209(1): 48-58, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37934672

RESUMO

Rationale: Within chronic obstructive pulmonary disease (COPD), emphysema is characterized by a significant yet partially understood B cell immune component. Objectives: To characterize the transcriptomic signatures from lymphoid follicles (LFs) in ever-smokers without COPD and patients with COPD with varying degrees of emphysema. Methods: Lung sections from 40 patients with COPD and ever-smokers were used for LF proteomic and transcriptomic spatial profiling. Formalin- and O.C.T.-fixed lung samples obtained from biopsies or lung explants were assessed for LF presence. Emphysema measurements were obtained from clinical chest computed tomographic scans. High-confidence transcriptional target intersection analyses were conducted to resolve emphysema-induced transcriptional networks. Measurements and Main Results: Overall, 115 LFs from ever-smokers and Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 and GOLD 3-4 patients were analyzed. No LFs were found in never-smokers. Differential gene expression analysis revealed significantly increased expression of LF assembly and B cell marker genes in subjects with severe emphysema. High-confidence transcriptional analysis revealed activation of an abnormal B cell activity signature in LFs (q-value = 2.56E-111). LFs from patients with GOLD 1-2 COPD with emphysema showed significantly increased expression of genes associated with antigen presentation, inflammation, and B cell activation and proliferation. LFs from patients with GOLD 1-2 COPD without emphysema showed an antiinflammatory profile. The extent of centrilobular emphysema was significantly associated with genes involved in B cell maturation and antibody production. Protein-RNA network analysis showed that LFs in emphysema have a unique signature skewed toward chronic B cell activation. Conclusions: An off-targeted B cell activation within LFs is associated with autoimmune-mediated emphysema pathogenesis.


Assuntos
Enfisema , Linfadenopatia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/genética , Proteômica , Perfilação da Expressão Gênica
3.
Artigo em Inglês | MEDLINE | ID: mdl-38935868

RESUMO

RATIONALE: While many studies have examined gene expression in lung tissue, the gene regulatory processes underlying emphysema are still not well understood. Finding efficient non-imaging screening methods and disease-modifying therapies has been challenging, but knowledge of the transcriptomic features of emphysema may help in this effort. OBJECTIVES: Our goals were to identify emphysema-associated biological pathways through transcriptomic analysis of bulk lung tissue, to determine the lung cell types in which these emphysema-associated pathways are altered, and to detect unique and overlapping transcriptomic signatures in blood and lung samples. METHODS: Using RNA-sequencing data from 446 samples in the Lung Tissue Research Consortium (LTRC) and 3,606 blood samples from the COPDGene study, we examined the transcriptomic features of chest computed tomography-quantified emphysema. We also leveraged publicly available lung single-cell RNA-sequencing data to identify cell types showing COPD-associated differential expression of the emphysema pathways found in the bulk analyses. MEASUREMENTS AND MAIN RESULTS: In the bulk lung RNA-seq analysis, 1,087 differentially expressed genes and 34 dysregulated pathways were significantly associated with emphysema. We observed alternative splicing of several genes and increased activity in pluripotency and cell barrier function pathways. Lung tissue and blood samples shared differentially expressed genes and biological pathways. Multiple lung cell types displayed dysregulation of epithelial barrier function pathways, and distinct pathway activities were observed among various macrophage subpopulations. CONCLUSIONS: This study identified emphysema-related changes in gene expression and alternative splicing, cell-type specific dysregulated pathways, and instances of shared pathway dysregulation between blood and lung.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38064378

RESUMO

RATIONALE: Within chronic obstructive pulmonary disease (COPD), emphysema is characterized by a significant yet partially understood B cell immune component. OBJECTIVE: To characterize the transcriptomic signatures from lymphoid follicles (LFs) in ever-smokers without COPD and COPD patients with varying degrees of emphysema. METHODS: Lung sections from 40 COPD patients and ever-smokers were used for LF proteomic and transcriptomic spatial profiling. Formalin and OCT-fixed lung samples obtained from biopsies or lung explants, were assessed for LF presence. Emphysema measurements were obtained from clinical chest CT scans. High confidence transcriptional (HCT) target intersection analyses were conducted to resolve emphysema-induced transcriptional networks. MEASUREMENTS AND MAIN RESULTS: Overall, 115 LFs from ever-smokers and GOLD 1-2 and GOLD 3-4 patients were analyzed. No LFs were found in never-smokers. Differential gene expression analysis revealed significantly increased expression of LF assembly and B cell markers genes in subjects with severe emphysema. HCT analysis revealed activation of abnormal B cell activity signature in LFs (q-value: 2.56E-111). LFs from GOLD 1-2 COPD patients with emphysema showed significantly increased expression of genes associated with antigen presentation, inflammation, and B cell activation and proliferation. LFs from GOLD 1-2 COPD patients without emphysema showed an anti-inflammatory profile. The extent of centrilobular emphysema was significantly associated with genes involved in B cell maturation and antibody production. Protein-RNA network analysis showed that LFs in emphysema have a unique signature skewed towards chronic B cell activation. CONCLUSIONS: An off-targeted B cell activation within LFs is associated with autoimmune-mediated emphysema pathogenesis.

5.
Am J Respir Cell Mol Biol ; 69(1): 22-33, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36450109

RESUMO

VISTA (V domain immunoglobulin suppressor of T cell activation, also called PD-1H [programmed death-1 homolog]), a novel immune regulator expressed on myeloid and T lymphocyte lineages, is upregulated in mouse and human idiopathic pulmonary fibrosis (IPF). However, the significance of VISTA and its therapeutic potential in regulating IPF has yet to be defined. To determine the role of VISTA and its therapeutic potential in IPF, the expression profile of VISTA was evaluated from human single-cell RNA sequencing data (IPF Cell Atlas). Inflammatory response and lung fibrosis were assessed in bleomycin-induced experimental pulmonary fibrosis models in VISTA-deficient mice compared with wild-type littermates. In addition, these outcomes were evaluated after VISTA agonistic antibody treatment in the wild-type pulmonary fibrosis mice. VISTA expression was increased in lung tissue-infiltrating monocytes of patients with IPF. VISTA was induced in the myeloid population, mainly circulating monocyte-derived macrophages, during bleomycin-induced pulmonary fibrosis. Genetic ablation of VISTA drastically promoted pulmonary fibrosis, and bleomycin-induced fibroblast activation was dependent on the interaction between VISTA-expressing myeloid cells and fibroblasts. Treatment with VISTA agonistic antibody reduced fibrotic phenotypes accompanied by the suppression of lung innate immune and fibrotic mediators. In conclusion, these results suggest that VISTA upregulation in pulmonary fibrosis may be a compensatory mechanism to limit inflammation and fibrosis, and stimulation of VISTA signaling using VISTA agonists effectively limits the fibrotic innate immune landscape and consequent tissue fibrosis. Further studies are warranted to test VISTA as a novel therapeutic target for the IPF treatment.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Camundongos , Animais , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Fibrose , Bleomicina/farmacologia , Inflamação/metabolismo , Fibroblastos/metabolismo
6.
Annu Rev Physiol ; 81: 375-402, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30485762

RESUMO

Regulated cell death is a major mechanism to eliminate damaged, infected, or superfluous cells. Previously, apoptosis was thought to be the only regulated cell death mechanism; however, new modalities of caspase-independent regulated cell death have been identified, including necroptosis, pyroptosis, and autophagic cell death. As an understanding of the cellular mechanisms that mediate regulated cell death continues to grow, there is increasing evidence that these pathways are implicated in the pathogenesis of many pulmonary disorders. This review summarizes our understanding of regulated cell death as it pertains to the pathogenesis of chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, acute respiratory distress syndrome, and pulmonary arterial hypertension.


Assuntos
Pneumopatias/fisiopatologia , Morte Celular Regulada , Animais , Apoptose , Asma/fisiopatologia , Morte Celular Autofágica , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Necroptose , Hipertensão Arterial Pulmonar/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Piroptose , Síndrome do Desconforto Respiratório/fisiopatologia
7.
Circulation ; 144(4): 286-302, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34030460

RESUMO

BACKGROUND: Cellular diversity of the lung endothelium has not been systematically characterized in humans. We provide a reference atlas of human lung endothelial cells (ECs) to facilitate a better understanding of the phenotypic diversity and composition of cells comprising the lung endothelium. METHODS: We reprocessed human control single-cell RNA sequencing (scRNAseq) data from 6 datasets. EC populations were characterized through iterative clustering with subsequent differential expression analysis. Marker genes were validated by fluorescent microscopy and in situ hybridization. scRNAseq of primary lung ECs cultured in vitro was performed. The signaling network between different lung cell types was studied. For cross-species analysis or disease relevance, we applied the same methods to scRNAseq data obtained from mouse lungs or from human lungs with pulmonary hypertension. RESULTS: Six lung scRNAseq datasets were reanalyzed and annotated to identify >15 000 vascular EC cells from 73 individuals. Differential expression analysis of EC revealed signatures corresponding to endothelial lineage, including panendothelial, panvascular, and subpopulation-specific marker gene sets. Beyond the broad cellular categories of lymphatic, capillary, arterial, and venous ECs, we found previously indistinguishable subpopulations; among venous EC, we identified 2 previously indistinguishable populations: pulmonary-venous ECs (COL15A1neg) localized to the lung parenchyma and systemic-venous ECs (COL15A1pos) localized to the airways and the visceral pleura; among capillary ECs, we confirmed their subclassification into recently discovered aerocytes characterized by EDNRB, SOSTDC1, and TBX2 and general capillary EC. We confirmed that all 6 endothelial cell types, including the systemic-venous ECs and aerocytes, are present in mice and identified endothelial marker genes conserved in humans and mice. Ligand-receptor connectome analysis revealed important homeostatic crosstalk of EC with other lung resident cell types. scRNAseq of commercially available primary lung ECs demonstrated a loss of their native lung phenotype in culture. scRNAseq revealed that endothelial diversity is maintained in pulmonary hypertension. Our article is accompanied by an online data mining tool (www.LungEndothelialCellAtlas.com). CONCLUSIONS: Our integrated analysis provides a comprehensive and well-crafted reference atlas of ECs in the normal lung and confirms and describes in detail previously unrecognized endothelial populations across a large number of humans and mice.


Assuntos
Biomarcadores , Células Endoteliais/metabolismo , Pulmão/metabolismo , Análise de Célula Única , Capilares , Biologia Computacional/métodos , Bases de Dados Genéticas , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pulmão/irrigação sanguínea , Pulmão/citologia , Microcirculação , Especificidade de Órgãos , Artéria Pulmonar , Veias Pulmonares , Análise de Célula Única/métodos , Transcriptoma
8.
Am J Physiol Lung Cell Mol Physiol ; 322(5): L761-L769, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137625

RESUMO

Pulmonary hypertension (PH) is a debilitating condition characterized by increased pulmonary arterial pressures and remodeling of pulmonary arteries, leading to right heart failure. Women have a higher prevalence of PH, whereas men have more severe disease and poorer outcomes. Animal models also show female-predominant disease. Despite the known sex differences in PH, little is known about how pathogenesis differs between the sexes. There is growing evidence of mitochondrial dysfunction, as well as altered mitophagy in PH. We hypothesized that sexual dimorphism contributes to mitochondrial dysfunction and altered mitophagy in PH. Using mouse lung endothelial cells, we exposed both wild-type and Parkin-/- cells to hypoxia and measured the effects on mitochondrial function and mitophagy-associated proteins. Our results show that females have more Parkin expression at baseline as well as increased mitochondrial respiratory capacity when exposed to oxidative stress. Inhibition of Parkin increased metabolic activity but reduced cell proliferation but to different degrees depending on sex, with results differing by sex. Our findings demonstrate sexual dimorphism in mitophagy-associated proteins and in mitochondrial respiration, which may help shed light on how the pathogenesis of PH may differ between the sexes.


Assuntos
Hipertensão Pulmonar , Mitofagia , Animais , Células Endoteliais/metabolismo , Feminino , Humanos , Hipertensão Pulmonar/metabolismo , Masculino , Camundongos , Mitofagia/fisiologia , Caracteres Sexuais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
J Transl Med ; 20(1): 127, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287685

RESUMO

90% of esophageal cancer are esophageal squamous cell carcinoma (ESCC) and ESCC has a very poor prognosis and high mortality. Nevertheless, the key metabolic pathways associated with ESCC progression haven't been revealed yet. Metabolomics has become a new platform for biomarker discovery over recent years. We aim to elucidate dominantly metabolic pathway in all ESCC tumor/node/metastasis (TNM) stages and adjacent cancerous tissues. We collected 60 postoperative esophageal tissues and 15 normal tissues adjacent to the tumor, then performed Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) analyses. The metabolites data was analyzed with metabolites differential and correlational expression heatmap according to stage I vs. con., stage I vs. stage II, stage II vs. stage III, and stage III vs. stage IV respectively. Metabolic pathways were acquired by Kyoto Encyclopedia of Genes and Genomes. (KEGG) pathway database. The metabolic pathway related genes were obtained via Gene Set Enrichment Analysis (GSEA). mRNA expression of ESCC metabolic pathway genes was detected by two public datasets: gene expression data series (GSE)23400 and The Cancer Genome Atlas (TCGA). Receiver operating characteristic curve (ROC) analysis is applied to metabolic pathway genes. 712 metabolites were identified in total. Glycerophospholipid metabolism was significantly distinct in ESCC progression. 16 genes of 77 genes of glycerophospholipid metabolism mRNA expression has differential significance between ESCC and normal controls. Phosphatidylserine synthase 1 (PTDSS1) and Lysophosphatidylcholine Acyltransferase1 (LPCAT1) had a good diagnostic value with Area under the ROC Curve (AUC) > 0.9 using ROC analysis. In this study, we identified glycerophospholipid metabolism was associated with the ESCC tumorigenesis and progression. Glycerophospholipid metabolism could be a potential therapeutic target of ESCC progression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Carcinoma de Células Escamosas/patologia , Cromatografia Líquida , Células Epiteliais/patologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Metabolômica , Espectrometria de Massas em Tandem
10.
Respir Res ; 23(1): 349, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522710

RESUMO

BACKGROUND: Despite causing increased morbidity and mortality, pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) patients (COPD-PH) lacks treatment, due to incomplete understanding of its pathogenesis. Hypertrophy of pulmonary arterial walls and pruning of the microvasculature with loss of capillary beds are known features of pulmonary vascular remodeling in COPD. The remodeling features of pulmonary medium- and smaller vessels in COPD-PH lungs are less well described and may be linked to maladaptation of endothelial cells to chronic cigarette smoking (CS). MicroRNA-126 (miR126), a master regulator of endothelial cell fate, has divergent functions that are vessel-size specific, supporting the survival of large vessel endothelial cells and inhibiting the proliferation of microvascular endothelial cells. Since CS decreases miR126 in microvascular lung endothelial cells, we set out to characterize the remodeling by pulmonary vascular size in COPD-PH and its relationship with miR126 in COPD and COPD-PH lungs. METHODS: Deidentified lung tissue was obtained from individuals with COPD with and without PH and from non-diseased non-smokers and smokers. Pulmonary artery remodeling was assessed by ⍺-smooth muscle actin (SMA) abundance via immunohistochemistry and analyzed by pulmonary artery size. miR126 and miR126-target abundance were quantified by qPCR. The expression levels of ceramide, ADAM9, and endothelial cell marker CD31 were assessed by immunofluorescence. RESULTS: Pulmonary arteries from COPD and COPD-PH lungs had significantly increased SMA abundance compared to non-COPD lungs, especially in small pulmonary arteries and the lung microvasculature. This was accompanied by significantly fewer endothelial cell markers and increased pro-apoptotic ceramide abundance. miR126 expression was significantly decreased in lungs of COPD individuals. Of the targets tested (SPRED1, VEGF, LAT1, ADAM9), lung miR126 most significantly inversely correlated with ADAM9 expression. Compared to controls, ADAM9 was significantly increased in COPD and COPD-PH lungs, predominantly in small pulmonary arteries and lung microvasculature. CONCLUSION: Both COPD and COPD-PH lungs exhibited significant remodeling of the pulmonary vascular bed of small and microvascular size, suggesting these changes may occur before or independent of the clinical development of PH. Decreased miR126 expression with reciprocal increase in ADAM9 may regulate endothelial cell survival and vascular remodeling in small pulmonary arteries and lung microvasculature in COPD and COPD-PH.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , Hipertensão Pulmonar/patologia , Remodelação Vascular , Células Endoteliais/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Artéria Pulmonar/metabolismo , Pulmão/metabolismo , Ceramidas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Membrana/metabolismo , Proteínas ADAM/metabolismo
11.
Am J Respir Crit Care Med ; 204(6): 651-666, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34033525

RESUMO

Rationale: Cigarette smoke (CS) inhalation triggers oxidative stress and inflammation, leading to accelerated lung aging, apoptosis, and emphysema, as well as systemic pathologies. Metformin is beneficial for protecting against aging-related diseases. Objectives: We sought to investigate whether metformin may ameliorate CS-induced pathologies of emphysematous chronic obstructive pulmonary disease (COPD). Methods: Mice were exposed chronically to CS and fed metformin-enriched chow for the second half of exposure. Lung, kidney, and muscle pathologies, lung proteostasis, endoplasmic reticulum (ER) stress, mitochondrial function, and mediators of metformin effects in vivo and/or in vitro were studied. We evaluated the association of metformin use with indices of emphysema progression over 5 years of follow-up among the COPDGene (Genetic Epidemiology of COPD) study participants. The association of metformin use with the percentage of emphysema and adjusted lung density was estimated by using a linear mixed model. Measurements and Main Results: Metformin protected against CS-induced pulmonary inflammation and airspace enlargement; small airway remodeling, glomerular shrinkage, oxidative stress, apoptosis, telomere damage, aging, dysmetabolism in vivo and in vitro; and ER stress. The AMPK (AMP-activated protein kinase) pathway was central to metformin's protective action. Within COPDGene, participants receiving metformin compared with those not receiving it had a slower progression of emphysema (-0.92%; 95% confidence interval [CI], -1.7% to -0.14%; P = 0.02) and a slower adjusted lung density decrease (2.2 g/L; 95% CI, 0.43 to 4.0 g/L; P = 0.01). Conclusions: Metformin protected against CS-induced lung, renal, and muscle injury; mitochondrial dysfunction; and unfolded protein responses and ER stress in mice. In humans, metformin use was associated with lesser emphysema progression over time. Our results provide a rationale for clinical trials testing the efficacy of metformin in limiting emphysema progression and its systemic consequences.


Assuntos
Metformina/uso terapêutico , Substâncias Protetoras/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Fumar Cigarros/efeitos adversos , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/metabolismo , Resultado do Tratamento
12.
J Biomech Eng ; 144(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171214

RESUMO

Competent elastic fibers are critical to the function of the lung and right circulation. Murine models of elastopathies can aid in understanding the functional roles of the elastin and elastin-associated glycoproteins that constitute elastic fibers. Here, we quantify together lung and pulmonary arterial structure, function, and mechanics with right heart function in a mouse model deficient in the elastin-associated glycoprotein fibulin-5. Differences emerged as a function of genotype, sex, and arterial region. Specifically, functional studies revealed increased lung compliance in fibulin-5 deficiency consistent with a histologically observed increased alveolar disruption. Biaxial mechanical tests revealed that the primary branch pulmonary arteries exhibit decreased elastic energy storage capacity and wall stress despite only modest differences in circumferential and axial material stiffness in the fibulin-5 deficient mice. Histological quantifications confirm a lower elastic fiber content in the fibulin-5 deficient pulmonary arteries, with fragmented elastic laminae in the outer part of the wall - likely the reason for reduced energy storage. Ultrasound measurements confirm sex differences in compromised right ventricular function in the fibulin-5 deficient mice. These results reveal compromised right heart function, but opposite effects of elastic fiber dysfunction on the lung parenchyma (significantly increased compliance) and pulmonary arteries (trend toward decreased distensibility), and call for further probing of ventilation-perfusion relationships in pulmonary pathologies. Amongst many other models, fibulin-5 deficient mice can contribute to our understanding of the complex roles of elastin in pulmonary health and disease.


Assuntos
Elastina , Proteínas da Matriz Extracelular/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Tecido Elástico , Elastina/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Feminino , Masculino , Camundongos
13.
Thorax ; 76(2): 134-143, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33303696

RESUMO

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is a genetic condition that causes early onset pulmonary emphysema and airways obstruction. The complete mechanisms via which AATD causes lung disease are not fully understood. To improve our understanding of the pathogenesis of AATD, we investigated gene expression profiles of bronchoalveolar lavage (BAL) and peripheral blood mononuclear cells (PBMCs) in AATD individuals. METHODS: We performed RNA-Seq on RNA extracted from matched BAL and PBMC samples isolated from 89 subjects enrolled in the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. Subjects were stratified by genotype and augmentation therapy. Supervised and unsupervised differential gene expression analyses were performed using Weighted Gene Co-expression Network Analysis (WGCNA) to identify gene profiles associated with subjects' clinical variables. The genes in the most significant WGCNA module were used to cluster AATD individuals. Gene validation was performed by NanoString nCounter Gene Expression Assay. RESULT: We observed modest effects of AATD genotype and augmentation therapy on gene expression. When WGCNA was applied to BAL transcriptome, one gene module, ME31 (2312 genes), correlated with the highest number of clinical variables and was functionally enriched with numerous immune T-lymphocyte related pathways. This gene module identified two distinct clusters of AATD individuals with different disease severity and distinct PBMC gene expression patterns. CONCLUSIONS: We successfully identified novel clusters of AATD individuals where severity correlated with increased immune response independent of individuals' genotype and augmentation therapy. These findings may suggest the presence of previously unrecognised disease endotypes in AATD that associate with T-lymphocyte immunity and disease severity.


Assuntos
Redes Reguladoras de Genes , Doença Pulmonar Obstrutiva Crônica/genética , Deficiência de alfa 1-Antitripsina/genética , Adulto , Líquido da Lavagem Broncoalveolar , Feminino , Perfilação da Expressão Gênica , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Estudos Prospectivos , Transcriptoma
14.
Eur Respir J ; 58(5)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33958427

RESUMO

BACKGROUND: Acute pulmonary exacerbations (AE) are episodes of clinical worsening in cystic fibrosis (CF), often precipitated by infection. Timely detection is critical to minimise morbidity and lung function declines associated with acute inflammation during AE. Based on our previous observations that airway protein short palate lung nasal epithelium clone 1 (SPLUNC1) is regulated by inflammatory signals, we investigated the use of SPLUNC1 fluctuations to diagnose and predict AE in CF. METHODS: We enrolled CF participants from two independent cohorts to measure AE markers of inflammation in sputum and recorded clinical outcomes for a 1-year follow-up period. RESULTS: SPLUNC1 levels were high in healthy controls (n=9, 10.7 µg·mL-1), and significantly decreased in CF participants without AE (n=30, 5.7 µg·mL-1; p=0.016). SPLUNC1 levels were 71.9% lower during AE (n=14, 1.6 µg·mL-1; p=0.0034) regardless of age, sex, CF-causing mutation or microbiology findings. Cytokines interleukin-1ß and tumour necrosis factor-α were also increased in AE, whereas lung function did not decrease consistently. Stable CF participants with lower SPLUNC1 levels were much more likely to have an AE at 60 days (hazard ratio (HR)±se 11.49±0.83; p=0.0033). Low-SPLUNC1 stable participants remained at higher AE risk even 1 year after sputum collection (HR±se 3.21±0.47; p=0.0125). SPLUNC1 was downregulated by inflammatory cytokines and proteases increased in sputum during AE. CONCLUSION: In acute CF care, low SPLUNC1 levels could support a decision to increase airway clearance or to initiate pharmacological interventions. In asymptomatic, stable patients, low SPLUNC1 levels could inform changes in clinical management to improve long-term disease control and clinical outcomes in CF.


Assuntos
Fibrose Cística , Glicoproteínas , Humanos , Pulmão , Mucosa Nasal , Fosfoproteínas
15.
Respir Res ; 22(1): 122, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902571

RESUMO

BACKGROUND: Asthma has been associated with impaired interferon response. Multiple cell types have been implicated in such response impairment and may be responsible for asthma immunopathology. However, existing models to study the immune response in asthma are limited by bulk profiling of cells. Our objective was to Characterize a model of peripheral blood mononuclear cells (PBMCs) of patients with severe asthma (SA) and its response to the TLR3 agonist Poly I:C using two single-cell methods. METHODS: Two complementary single-cell methods, DropSeq for single-cell RNA sequencing (scRNA-Seq) and mass cytometry (CyTOF), were used to profile PBMCs of SA patients and healthy controls (HC). Poly I:C-stimulated and unstimulated cells were analyzed in this study. RESULTS: PBMCs (n = 9414) from five SA (n = 6099) and three HC (n = 3315) were profiled using scRNA-Seq. Six main cell subsets, namely CD4 + T cells, CD8 + T cells, natural killer (NK) cells, B cells, dendritic cells (DCs), and monocytes, were identified. CD4 + T cells were the main cell type in SA and demonstrated a pro-inflammatory profile characterized by increased JAK1 expression. Following Poly I:C stimulation, PBMCs from SA had a robust induction of interferon pathways compared with HC. CyTOF profiling of Poly I:C stimulated and unstimulated PBMCs (n = 160,000) from the same individuals (SA = 5; HC = 3) demonstrated higher CD8 + and CD8 + effector T cells in SA at baseline, followed by a decrease of CD8 + effector T cells after poly I:C stimulation. CONCLUSIONS: Single-cell profiling of an in vitro model using PBMCs in patients with SA identified activation of pro-inflammatory pathways at baseline and strong response to Poly I:C, as well as quantitative changes in CD8 + effector cells. Thus, transcriptomic and cell quantitative changes are associated with immune cell heterogeneity in this model to evaluate interferon responses in severe asthma.


Assuntos
Asma/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Poli I-C/farmacologia , Análise de Célula Única , Adulto , Asma/diagnóstico , Asma/genética , Estudos de Casos e Controles , Células Cultivadas , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , RNA-Seq , Índice de Gravidade de Doença , Fatores de Tempo , Transcriptoma , Adulto Jovem
16.
FASEB J ; 34(3): 4219-4233, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31961019

RESUMO

Sepsis is a leading cause of death worldwide and recent studies have shown white adipose tissue (WAT) to be an important regulator in septic conditions. In the present study, the role of the inflammatory cytokine macrophage migration inhibitory factor (MIF) and its structural homolog D-dopachrome tautomerase (D-DT/MIF-2) were investigated in WAT in a murine endotoxemia model. Both MIF and MIF-2 levels were increased in the peritoneal fluid of LPS-challenged wild-type mice, yet, in visceral WAT, the proteins were differentially regulated, with elevated MIF but downregulated MIF-2 expression in adipocytes. Mif gene deletion polarized adipose tissue macrophages (ATM) toward an anti-inflammatory phenotype while Mif-2 gene knockout drove ATMs toward a pro-inflammatory phenotype and Mif-deficiency was found to increase fibroblast viability. Additionally, we observed the same differential regulation of these two MIF family proteins in human adipose tissue in septic vs healthy patients. Taken together, these data suggest an inverse relationship between adipocyte MIF and MIF-2 expression during systemic inflammation, with the downregulation of MIF-2 in fat tissue potentially increasing pro-inflammatory macrophage polarization to further drive adipose inflammation.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Endotoxemia/imunologia , Endotoxemia/metabolismo , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Macrófagos Peritoneais/fisiologia , Células 3T3 , Adipócitos/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Oxirredutases Intramoleculares/genética , Ativação de Macrófagos/genética , Ativação de Macrófagos/fisiologia , Fatores Inibidores da Migração de Macrófagos/genética , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Am J Respir Crit Care Med ; 202(1): 51-64, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32255668

RESUMO

Rationale: MicroRNAs are potent regulators of biologic systems that are critical to tissue homeostasis. Individual microRNAs have been identified in airway samples. However, a systems analysis of the microRNA-mRNA networks present in the sputum that contribute to airway inflammation in asthma has not been published.Objectives: Identify microRNA and mRNA networks in the sputum of patients with asthma.Methods: We conducted a genome-wide analysis of microRNA and mRNA in the sputum from patients with asthma and correlated expression with clinical phenotypes. Weighted gene correlation network analysis was implemented to identify microRNA networks (modules) that significantly correlate with clinical features of asthma and mRNA expression networks. MicroRNA expression in peripheral blood neutrophils and lymphocytes and in situ hybridization of the sputum were used to identify the cellular sources of microRNAs. MicroRNA expression obtained before and after ozone exposure was also used to identify changes associated with neutrophil counts in the airway.Measurements and Main Results: Six microRNA modules were associated with clinical features of asthma. A single module (nely) was associated with a history of hospitalizations, lung function impairment, and numbers of neutrophils and lymphocytes in the sputum. Of the 12 microRNAs in the nely module, hsa-miR-223-3p was the highest expressed microRNA in neutrophils and was associated with increased neutrophil counts in the sputum in response to ozone exposure. Multiple microRNAs in the nely module correlated with two mRNA modules enriched for TLR (Toll-like receptor) and T-helper cell type 17 (Th17) signaling and endoplasmic reticulum stress. hsa-miR-223-3p was a key regulator of the TLR and Th17 pathways in the sputum of subjects with asthma.Conclusions: This study of sputum microRNA and mRNA expression from patients with asthma demonstrates the existence of microRNA networks and genes that are associated with features of asthma severity. Among these, hsa-miR-223-3p, a neutrophil-derived microRNA, regulates TLR/Th17 signaling and endoplasmic reticulum stress.


Assuntos
Asma/imunologia , Redes Reguladoras de Genes , MicroRNAs/metabolismo , Neutrófilos/metabolismo , Índice de Gravidade de Doença , Escarro/metabolismo , Adulto , Idoso , Asma/diagnóstico , Asma/genética , Biomarcadores/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Feminino , Estudo de Associação Genômica Ampla , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , RNA Mensageiro/metabolismo
18.
Am J Respir Crit Care Med ; 202(10): 1419-1429, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32603604

RESUMO

Rationale: Cystic fibrosis (CF) is a life-shortening, multisystem hereditary disease caused by abnormal chloride transport. CF lung disease is driven by innate immune dysfunction and exaggerated inflammatory responses that contribute to tissue injury. To define the transcriptional profile of this airway immune dysfunction, we performed the first single-cell transcriptome characterization of CF sputum.Objectives: To define the transcriptional profile of sputum cells and its implication in the pathogenesis of immune function and the development of CF lung disease.Methods: We performed single-cell RNA sequencing of sputum cells from nine subjects with CF and five healthy control subjects. We applied novel computational approaches to define expression-based cell function and maturity profiles, herein called transcriptional archetypes.Measurements and Main Results: The airway immune cell repertoire shifted from alveolar macrophages in healthy control subjects to a predominance of recruited monocytes and neutrophils in CF. Recruited lung mononuclear phagocytes were abundant in CF and were separated into the following three archetypes: activated monocytes, monocyte-derived macrophages, and heat shock-activated monocytes. Neutrophils were the most prevalent in CF, with a dominant immature proinflammatory archetype. Although CF monocytes exhibited proinflammatory features, both monocytes and neutrophils showed transcriptional evidence of abnormal phagocytic and cell-survival programs.Conclusions: Our findings offer an opportunity to understand subject-specific immune dysfunction and its contribution to divergent clinical courses in CF. As we progress toward personalized applications of therapeutic and genomic developments, we hope this inflammation-profiling approach will enable further discoveries that change the natural history of CF lung disease.


Assuntos
Resistência das Vias Respiratórias/genética , Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Inflamação/genética , Inflamação/fisiopatologia , Ativação Transcricional/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Célula Única
19.
FASEB J ; 33(2): 2171-2186, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30252532

RESUMO

Dysregulated neutrophil extravasation contributes to the pathogenesis of many inflammatory disorders. Pericytes (PCs) have been implicated in the regulation of neutrophil transmigration, and previous work demonstrates that endothelial cell (EC)-derived signals reduce PC barrier function; however, the signaling mechanisms are unknown. Here, we demonstrate a novel role for EC-derived macrophage migration inhibitory factor (MIF) in inhibiting PC contractility and facilitating neutrophil transmigration. With the use of micro-ELISAs, RNA sequencing, quantitative PCR, and flow cytometry, we found that ECs secrete MIF, and PCs upregulate CD74 in response to TNF-α. We demonstrate that EC-derived MIF decreases PC contractility on 2-dimensional silicone substrates via reduction of phosphorylated myosin light chain. With the use of an in vitro microvascular model of the human EC-PC barrier, we demonstrate that MIF decreases the PC barrier to human neutrophil transmigration by increasing intercellular PC gap formation. For the first time, an EC-specific MIF knockout mouse was used to investigate the effects of selective deletion of EC MIF. In a model of acute lung injury, selective deletion of EC MIF decreases neutrophil infiltration to the bronchoalveolar lavage and tissue and simultaneously decreases PC relaxation by increasing myosin light-chain phosphorylation. We conclude that paracrine signals from EC via MIF decrease PC contraction and enhance PC-regulated neutrophil transmigration.-Pellowe, A. S., Sauler, M., Hou, Y., Merola, J., Liu, R., Calderon, B., Lauridsen, H. M., Harris, M. R., Leng, L., Zhang, Y., Tilstam, P. V., Pober, J. S., Bucala, R., Lee, P. J., Gonzalez, A. L. Endothelial cell-secreted MIF reduces pericyte contractility and enhances neutrophil extravasation.


Assuntos
Endotélio Vascular/metabolismo , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Neutrófilos/citologia , Pericitos/citologia , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Endotélio Vascular/citologia , Ensaio de Imunoadsorção Enzimática , Humanos , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA