Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Pharmacol Exp Ther ; 339(1): 115-24, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21775475

RESUMO

Ghrelin influences a variety of metabolic functions through a direct action at its receptor, the GhrR (GhrR-1a). Ghrelin knockout (KO) and GhrR KO mice are resistant to the negative effects of high-fat diet (HFD) feeding. We have generated several classes of small-molecule GhrR antagonists and evaluated whether pharmacologic blockade of ghrelin signaling can recapitulate the phenotype of ghrelin/GhrR KO mice. Antagonist treatment blocked ghrelin-induced and spontaneous food intake; however, the effects on spontaneous feeding were absent in GhrR KO mice, suggesting target-specific effects of the antagonists. Oral administration of antagonists to HFD-fed mice improved insulin sensitivity in both glucose tolerance and glycemic clamp tests. The insulin sensitivity observed was characterized by improved glucose disposal with dramatically decreased insulin secretion. It is noteworthy that these results mimic those obtained in similar tests of HFD-fed GhrR KO mice. HFD-fed mice treated for 56 days with antagonist experienced a transient decrease in food intake but a sustained body weight decrease resulting from decreased white adipose, but not lean tissue. They also had improved glucose disposal and a striking reduction in the amount of insulin needed to achieve this. These mice had reduced hepatic steatosis, improved liver function, and no evidence of systemic toxicity relative to controls. Furthermore, GhrR KO mice placed on low- or high-fat diets had lifespans similar to the wild type, emphasizing the long-term safety of ghrelin receptor blockade. We have therefore demonstrated that chronic pharmacologic blockade of the GhrR is an effective and safe strategy for treating metabolic syndrome.


Assuntos
Resistência à Insulina/fisiologia , Insulina/metabolismo , Receptores de Grelina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , Gorduras na Dieta/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Grelina/antagonistas & inibidores , Grelina/farmacologia , Técnica Clamp de Glucose , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/tratamento farmacológico , Receptores de Grelina/fisiologia , Estresse Fisiológico/fisiologia
2.
BMC Physiol ; 11: 1, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21211044

RESUMO

BACKGROUND: We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. RESULTS: Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy ß-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. CONCLUSIONS: These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust improvements of glucose disposal in both normal and metabolically challenged states, relative to WT controls. GhrR KO mice have an intact 1st phase insulin response but require significantly less insulin for glucose disposal. Our experiments reveal that the insulin sensitivity of GhrR KO mice is due to both BW independent and dependent factors. We also provide several lines of evidence that a key feature of the GhrR KO mouse is maintenance of hepatic insulin sensitivity during metabolic challenge.


Assuntos
Técnica Clamp de Glucose/métodos , Resistência à Insulina/genética , Insulina/sangue , Receptores de Grelina/deficiência , Animais , Gorduras na Dieta/administração & dosagem , Teste de Tolerância a Glucose/métodos , Índice Glicêmico/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
ACS Med Chem Lett ; 9(4): 300-305, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29670690

RESUMO

Somatic point mutations at a key arginine residue (R132) within the active site of the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) confer a novel gain of function in cancer cells, resulting in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite. Elevated 2-HG levels are implicated in epigenetic alterations and impaired cellular differentiation. IDH1 mutations have been described in an array of hematologic malignancies and solid tumors. Here, we report the discovery of AG-120 (ivosidenib), an inhibitor of the IDH1 mutant enzyme that exhibits profound 2-HG lowering in tumor models and the ability to effect differentiation of primary patient AML samples ex vivo. Preliminary data from phase 1 clinical trials enrolling patients with cancers harboring an IDH1 mutation indicate that AG-120 has an acceptable safety profile and clinical activity.

4.
Cancer Discov ; 7(5): 478-493, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28193778

RESUMO

Somatic gain-of-function mutations in isocitrate dehydrogenases (IDH) 1 and 2 are found in multiple hematologic and solid tumors, leading to accumulation of the oncometabolite (R)-2-hydroxyglutarate (2HG). 2HG competitively inhibits α-ketoglutarate-dependent dioxygenases, including histone demethylases and methylcytosine dioxygenases of the TET family, causing epigenetic dysregulation and a block in cellular differentiation. In vitro studies have provided proof of concept for mutant IDH inhibition as a therapeutic approach. We report the discovery and characterization of AG-221, an orally available, selective, potent inhibitor of the mutant IDH2 enzyme. AG-221 suppressed 2HG production and induced cellular differentiation in primary human IDH2 mutation-positive acute myeloid leukemia (AML) cells ex vivo and in xenograft mouse models. AG-221 also provided a statistically significant survival benefit in an aggressive IDH2R140Q-mutant AML xenograft mouse model. These findings supported initiation of the ongoing clinical trials of AG-221 in patients with IDH2 mutation-positive advanced hematologic malignancies.Significance: Mutations in IDH1/2 are identified in approximately 20% of patients with AML and contribute to leukemia via a block in hematopoietic cell differentiation. We have shown that the targeted inhibitor AG-221 suppresses the mutant IDH2 enzyme in multiple preclinical models and induces differentiation of malignant blasts, supporting its clinical development. Cancer Discov; 7(5); 478-93. ©2017 AACR.See related commentary by Thomas and Majeti, p. 459See related article by Shih et al., p. 494This article is highlighted in the In This Issue feature, p. 443.


Assuntos
Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Isocitrato Desidrogenase/antagonistas & inibidores , Leucemia Mieloide Aguda/genética , Triazinas/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Isocitrato Desidrogenase/genética , Camundongos , Mutação , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Med Chem ; 48(25): 8045-54, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16335928

RESUMO

High-throughput screening against the human sirtuin SIRT1 led to the discovery of a series of indoles as potent inhibitors that are selective for SIRT1 over other deacetylases and NAD-processing enzymes. The most potent compounds described herein inhibit SIRT1 with IC50 values of 60-100 nM, representing a 500-fold improvement over previously reported SIRT inhibitors. Preparation of enantiomerically pure indole derivatives allowed for their characterization in vitro and in vivo. Kinetic analyses suggest that these inhibitors bind after the release of nicotinamide from the enzyme and prevent the release of deacetylated peptide and O-acetyl-ADP-ribose, the products of enzyme-catalyzed deacetylation. These SIRT1 inhibitors are low molecular weight, cell-permeable, orally bioavailable, and metabolically stable. These compounds provide chemical tools to study the biology of SIRT1 and to explore therapeutic uses for SIRT1 inhibitors.


Assuntos
Carbazóis/síntese química , Inibidores de Histona Desacetilases , Indóis/síntese química , Sirtuínas/antagonistas & inibidores , Animais , Disponibilidade Biológica , Células CHO , Carbazóis/química , Carbazóis/farmacologia , Permeabilidade da Membrana Celular , Cricetinae , Cricetulus , Estabilidade de Medicamentos , Fluorometria , Histona Desacetilases/química , Humanos , Técnicas In Vitro , Indóis/química , Indóis/farmacologia , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , NAD/química , NAD+ Nucleosidase/química , Niacinamida/química , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Sirtuína 1 , Sirtuínas/química , Estereoisomerismo , Relação Estrutura-Atividade
6.
Science ; 340(6132): 622-6, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23558173

RESUMO

A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia cells in vitro. These data provide proof-of-concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.


Assuntos
Inibidores Enzimáticos/farmacologia , Hematopoese/efeitos dos fármacos , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/enzimologia , Compostos de Fenilureia/farmacologia , Sulfonamidas/farmacologia , Sítio Alostérico , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Eritropoese/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica , Glutaratos/metabolismo , Humanos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Leucemia Eritroblástica Aguda , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Terapia de Alvo Molecular , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Compostos de Fenilureia/química , Compostos de Fenilureia/metabolismo , Mutação Puntual , Multimerização Proteica , Estrutura Secundária de Proteína , Bibliotecas de Moléculas Pequenas , Sulfonamidas/química , Sulfonamidas/metabolismo
7.
ACS Med Chem Lett ; 3(10): 850-5, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24900389

RESUMO

Optimization of a series of R132H IDH1 inhibitors from a high throughput screen led to the first potent molecules that show robust tumor 2-HG inhibition in a xenograft model. Compound 35 shows good potency in the U87 R132H cell based assay and ∼90% tumor 2-HG inhibition in the corresponding mouse xenograft model following BID dosing. The magnitude and duration of tumor 2-HG inhibition correlates with free plasma concentration.

8.
Bioorg Med Chem Lett ; 17(8): 2250-3, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17289381

RESUMO

A series of potent thiol-containing aryl sulfonamide TACE inhibitors was designed and synthesized. The SAR and MMP selectivity of the series were investigated. In particular, compound 4b has shown excellent in vitro potency against the isolated TACE enzyme and good selectivity over MMP-2, -7, -8, -9, and -13. The X-ray structure of 4b bound to TACE was obtained.


Assuntos
Proteínas ADAM/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Sulfonamidas/síntese química , Proteína ADAM17 , Artrite Reumatoide/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Humanos , Metaloproteases , Relação Estrutura-Atividade , Especificidade por Substrato , Compostos de Sulfidrila , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA