RESUMO
A first-principles scaling law, based on turbulent transport considerations, and a multimachine database of density limit discharges from the ASDEX Upgrade, JET, and TCV tokamaks, show that the increase of the boundary turbulent transport with the plasma collisionality sets the maximum density achievable in tokamaks. This scaling law shows a strong dependence on the heating power, therefore predicting for ITER a significantly larger safety margin than the Greenwald empirical scaling [Greenwald et al., Nucl. Fusion, 28, 2199 (1988)NUFUAU0029-551510.1088/0029-5515/28/12/009] in case of unintentional high-to-low confinement transition.
RESUMO
Edge intrinsic rotation was investigated in Ohmic L-mode discharges on the Tokamak à Configuration Variable, scanning the major radial position of the X point, R(X). Edge rotation decreased linearly with increasing R(X), vanishing or becoming countercurrent for an outboard X point, in agreement with theoretical expectations. The core rotation profile shifted fairly rigidly with the edge rotation, changing the central rotation speed by more than a factor of two. Core rotation reversals had little effect on the edge rotation velocity. Edge rotation was modestly more countercurrent in unfavorable than favorable ∇B shots.
RESUMO
In the standard scenario of tokamak plasma operation, sawtooth crashes are the main perturbations that can trigger performance-degrading, and potentially disruption-generating, neoclassical tearing modes. This Letter demonstrates sawtooth pacing by real-time control of the auxiliary power. It is shown that the sawtooth crash takes place in a reproducible manner shortly after the removal of that power, and this can be used to precisely prescribe, i.e., pace, the individual sawteeth. In combination with preemptive stabilization of the neoclassical tearing modes, sawtooth pacing provides a new sawtooth control paradigm for improved performance in burning plasmas.
RESUMO
Magnetohydrodynamic (MHD) equilibrium states with imposed axisymmetric boundary are computed in which a spontaneous bifurcation develops to produce an internal three-dimensional (3D) configuration with a helical structure in addition to the standard axisymmetric system. Equilibrium states with similar MHD energy levels are shown to develop very different geometric structures. The helical equilibrium states resemble saturated internal kink mode structures.
RESUMO
An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a "snowflake" (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increased normalized ELM energy (ΔWELM/Wp) compared to an identically shaped, conventional single-null diverted H mode. Enhanced stability of mid- to high-toroidal-mode-number ideal modes is consistent with the different snowflake ELM phenomenology. The capability of the snowflake to redistribute the edge power on the additional strike points has been confirmed experimentally.
RESUMO
The first experimental evidence of parallel momentum transport generated by the up-down asymmetry of a toroidal plasma is reported. The experiments, conducted in the Tokamak à Configuration Variable, were motivated by the recent theoretical discovery of ion-scale turbulent momentum transport induced by an up-down asymmetry in the magnetic equilibrium. The toroidal rotation gradient is observed to depend on the asymmetry in the outer part of the plasma leading to a variation of the central rotation by a factor of 1.5-2. The direction of the effect and its magnitude are in agreement with theoretical predictions for the eight possible combinations of plasma asymmetry, current, and magnetic field.
RESUMO
A steady-state, fully noninductive plasma current has been sustained for the first time in a tokamak using electron cyclotron current drive only. In this discharge, 123 kA of current have been sustained for the entire gyrotron pulse duration of 2 s. Careful distribution across the plasma minor radius of the power deposited from three 0. 5-MW gyrotrons was essential for reaching steady-state conditions. With central current drive, up to 153 kA of current have been fully replaced transiently for 100 ms. The noninductive scenario is confirmed by the ability to recharge the Ohmic transformer. The dependence of the current drive efficiency on the minor radius is also demonstrated.
RESUMO
Electron cyclotron heating (ECH) is widely used in magnetic fusion devices, and the polarization of the injected millimeter-wave beams plays a crucial role in the propagation and absorption of the beam energy by the plasma. This polarization can be adjusted by grating mirror polarizers placed in the transmission lines which carry the microwaves from the power source to the plasma. In long-pulse devices such as the Large Helical Device (LHD) and ITER, it is desirable to track changes in the plasma and adjust the polarization of the ECH in real time such as to keep the absorption as high as possible and avoid shine-through which may lead to overheating of vessel components. For this purpose a real-time feedback control scheme is envisioned in which a measure of the absorption efficiency can be used to adjust the orientation of the polarizing mirrors toward an optimum. Such a setup has been tested in a low-power test stand as preparation for future implementation in the LHD ECH system. It is shown that a simple search algorithm is efficient and can in principle be used to control either the absorption efficiency or the linear polarization angle.
RESUMO
Improved electron energy confinement in tokamak plasmas, related to internal transport barriers, has been linked to nonmonotonic current density profiles. This is difficult to prove experimentally since usually the current profiles evolve continuously and current injection generally requires significant input power. New experiments are presented, in which the inductive current is used to generate positive and negative current density perturbations in the plasma center, with negligible input power. These results demonstrate unambiguously for the first time that the electron confinement can be modified significantly solely by perturbing the current density profile.
RESUMO
Calculation of electron-cyclotron-current drive (ECCD) with the comprehensive CQL3D Fokker-Planck code for a TCV tokamak shot gives 550 kA of driven toroidal current, in marked disagreement with the 100-kA experimental value. Published ECCD efficiencies calculated with CQL3D in the much larger, higher-confinement DIII-D tokamak are in excellent agreement with experiment. The disagreement is resolved by including in the calculations electrostatic-type radial transport at levels given by global energy confinement in tokamaks. The radial transport of energy and toroidal current are in agreement.
RESUMO
In the TCV tokamak, the m/n = 2/1 island is observed in low-density discharges with central electron-cyclotron current drive. The evolution of its width has two distinct growth phases, one of which can be linked to a "conventional" tearing mode driven unstable by the current profile and the other to a neoclassical tearing mode driven by a perturbation of the bootstrap current. The TCV results provide the first clear observation of such a destabilization mechanism and reconcile the theory of conventional and neoclassical tearing modes, which differ only in the dominant driving term.
RESUMO
Clear evidence is reported for the first time of a rapid localized reduction of core electron energy diffusivity during the formation of an electron internal-transport barrier. The transition occurs rapidly (approximately = 3 ms), during a slow (approximately = 200 ms) self-inductive evolution of the magnetic shear. This crucial observation, and the correlation of the transition with the time and location of the magnetic shear reversal, lend support to models attributing the reduced transport to the local properties of a zero-shear region, in contrast to models predicting a gradual reduction due to a weak or negative shear.
RESUMO
Results from MAST provide a first test of neoclassical tearing mode physics in the spherical tokamak (ST). The mode accounts for the main performance limit in conventional tokamaks. Its behavior in the ST is remarkably well described by existing theoretical models, although it is more readily seeded by sawtooth events in these scenarios. Modeling confirms the significance of stabilizing field-curvature effects. This provides good grounds for optimism that with suitable control of profiles, it may be possible to avoid these modes in the ST.
RESUMO
Current profile tailoring by electron cyclotron heating (ECH) and current drive (ECCD) is used to improve central electron energy confinement in the TCV tokamak. Counter-ECCD on axis alone achieves this goal in a transient manner only. A stable scenario is obtained by a two-step sequence of off-axis ECH, which stabilizes magnetohydrodynamics modes, and on-axis counter-ECCD, which generates a flat or inverted current profile. This high-confinement regime, with central temperatures up to 9 keV (at a normalized beta(N) approximately 0.6), has been sustained for the entire duration of the heating pulse, or over 200 electron energy confinement times and 5 current redistribution times.
RESUMO
In a tokamak fusion reactor the energetic alpha particles will transiently stabilize the magnetohydrodynamic activity causing sawtooth oscillations. The crash events terminating long sawtooth free periods can provide seed islands for neoclassical tearing modes [Phys. Rev. Lett. 88, 105001 (2002)]]. To shorten the sawtooth periods localized current drive near the q=1 surface is a possibility. This Letter provides the first experimental evidence for the effectiveness of this method in the different physics regime associated with fast-ion-induced long sawteeth on the JET tokamak.
RESUMO
The onset of a neoclassical tearing mode (NTM) depends on the existence of a large enough seed island. It is shown in the Joint European Torus that NTMs can be readily destabilized by long-period sawteeth, such as obtained by sawtooth stabilization from ion-cyclotron heating or current drive. This has important implications for burning plasma scenarios, as alpha particles strongly stabilize the sawteeth. It is also shown that, by adding heating and current drive just outside the inversion radius, sawteeth are destabilized, resulting in shorter sawtooth periods and larger beta values being obtained without NTMs.