RESUMO
PURPOSE: Programmed cell death protein 1 (PD-1) expression on CD8+TIM-3-LAG-3- tumor-infiltrating cells predicts positive response to PD-1 blockade in metastatic clear-cell renal cell carcinoma (mccRCC). Because inhibition of PD-1 signaling in regulatory T cells (Treg) augments their immunosuppressive function, we hypothesized that PD-1 expression on tumor-infiltrating Tregs would predict resistance to PD-1 inhibitors. EXPERIMENTAL DESIGN: PD-1+ Tregs were phenotyped using multiparametric immunofluorescence in ccRCC tissues from the CheckMate-025 trial (nivolumab: n = 91; everolimus: n = 90). Expression of CD8, PD-1, TIM-3, and LAG-3 was previously determined (Ficial and colleagues, 2021). Clinical endpoints included progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). RESULTS: In the nivolumab (but not everolimus) arm, high percentage of PD-1+ Tregs was associated with shorter PFS (3.19 vs. 5.78 months; P = 0.021), shorter OS (18.1 vs. 27.7 months; P = 0.013) and marginally lower ORR (12.5% vs. 31.3%; P = 0.059). An integrated biomarker (PD-1 Treg/CD8 ratio) was developed by calculating the ratio between percentage of PD-1+Tregs (marker of resistance) and percentage of CD8+PD-1+TIM-3-LAG-3- cells (marker of response). In the nivolumab (but not everolimus) arm, patients with high PD-1 Treg/CD8 ratio experienced shorter PFS (3.48 vs. 9.23 months; P < 0.001), shorter OS (18.14 vs. 38.21 months; P < 0.001), and lower ORR (15.69% vs. 40.00%; P = 0.009). Compared with the individual biomarkers, the PD-1 Treg/CD8 ratio showed improved ability to predict outcomes to nivolumab versus everolimus. CONCLUSIONS: PD-1 expression on Tregs is associated with resistance to PD-1 blockade in mccRCC, suggesting that targeting Tregs may synergize with PD-1 inhibition. A model that integrates PD-1 expression on Tregs and CD8+TIM-3-LAG-3- cells has higher predictive value.
Assuntos
Carcinoma de Células Renais , Humanos , Carcinoma de Células Renais/patologia , Nivolumabe/uso terapêutico , Linfócitos T Reguladores/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Everolimo/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismoRESUMO
Cancer cell proliferation requires precise control of E2F1 activity; excess activity promotes apoptosis. Here, we developed cell-permeable and bioavailable macrocycles that selectively kill small cell lung cancer (SCLC) cells with inherent high E2F1 activity by blocking RxL-mediated interactions of cyclin A and cyclin B with select substrates. Genome-wide CRISPR/Cas9 knockout and random mutagenesis screens found that cyclin A/B RxL macrocyclic inhibitors (cyclin A/Bi) induced apoptosis paradoxically by cyclin B- and Cdk2-dependent spindle assembly checkpoint activation (SAC). Mechanistically, cyclin A/Bi hyperactivate E2F1 and cyclin B by blocking their RxL-interactions with cyclin A and Myt1, respectively, ultimately leading to SAC activation and mitotic cell death. Base editor screens identified cyclin B variants that confer cyclin A/Bi resistance including several variants that disrupted cyclin B:Cdk interactions. Unexpectedly but consistent with our base editor and knockout screens, cyclin A/Bi induced the formation of neo-morphic Cdk2-cyclin B complexes that promote SAC activation and apoptosis. Finally, orally-bioavailable cyclin A/Bi robustly inhibited tumor growth in chemotherapy-resistant patient-derived xenograft models of SCLC. This work uncovers gain-of-function mechanisms by which cyclin A/Bi induce apoptosis in cancers with high E2F activity, and suggests cyclin A/Bi as a therapeutic strategy for SCLC and other cancers driven by high E2F activity.