Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11602, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773168

RESUMO

Solid electrolytes hold substantial promise as vital components of all-solid-state batteries. Enhancing their performance necessitates simultaneous improvements in their stability and lithium conductivity. These properties can be calculated using first-principles simulations, provided that the crystal structure of the material and the diffusion pathway through the material are known. However, solid electrolytes typically incorporate dopants to enhance their properties, necessitating the optimization of the dopant configuration for the simulations. Yet, performing such calculations via the first-principles approach is so costly that existing approaches usually rely on predetermined dopant configurations informed by existing knowledge or are limited to systems doped with only a few atoms. The proposed method enables the optimization of the dopant configuration with the support of neural network potential (NNP). Our approach entails the use of molecular dynamics to analyze the diffusion after the optimization of the dopant configuration. The application of our approach to Li 10 MP 2 S 12 - x O x (M = Ge, Si, or Sn) reproduce the experimental results well. Furthermore, analysis of the lithium diffusion pathways suggests that the activation energy of diffusion undergoes a percolation transition. This study demonstrates the effectiveness of NNPs in the systematic exploration of solid electrolytes.

2.
Nat Commun ; 13(1): 2991, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637178

RESUMO

Computational material discovery is under intense study owing to its ability to explore the vast space of chemical systems. Neural network potentials (NNPs) have been shown to be particularly effective in conducting atomistic simulations for such purposes. However, existing NNPs are generally designed for narrow target materials, making them unsuitable for broader applications in material discovery. Here we report a development of universal NNP called PreFerred Potential (PFP), which is able to handle any combination of 45 elements. Particular emphasis is placed on the datasets, which include a diverse set of virtual structures used to attain the universality. We demonstrated the applicability of PFP in selected domains: lithium diffusion in LiFeSO4F, molecular adsorption in metal-organic frameworks, an order-disorder transition of Cu-Au alloys, and material discovery for a Fischer-Tropsch catalyst. They showcase the power of PFP, and this technology provides a highly useful tool for material discovery.


Assuntos
Estruturas Metalorgânicas , Redes Neurais de Computação , Adsorção , Catálise
3.
Sci Rep ; 10(1): 7903, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404915

RESUMO

We present semi-supervised information maximizing self-argument training (IMSAT), a neural network-based classification method that works without the preparation of labeled data. Semi-supervised IMSAT can amplify specific differences and avoid undesirable misclassification in accordance with the purpose. We demonstrate that semi-supervised IMSAT has a comparable performance with existing methods for semi-supervised learning of image classification and can also classify real experimental data (X-ray diffraction patterns and thermoelectric hysteresis curves) in the same way even though their shape and dimensions are different. Our algorithm will contribute to the automation of big data processing and artificial intelligence-driven material development.

4.
Sci Rep ; 9(1): 2751, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808974

RESUMO

Thermoelectric technologies are becoming indispensable in the quest for a sustainable future. Recently, an emerging phenomenon, the spin-driven thermoelectric effect (STE), has garnered much attention as a promising path towards low cost and versatile thermoelectric technology with easily scalable manufacturing. However, progress in development of STE devices is hindered by the lack of understanding of the fundamental physics and materials properties responsible for the effect. In such nascent scientific field, data-driven approaches relying on statistics and machine learning, instead of more traditional modeling methods, can exhibit their full potential. Here, we use machine learning modeling to establish the key physical parameters controlling STE. Guided by the models, we have carried out actual material synthesis which led to the identification of a novel STE material with a thermopower an order of magnitude larger than that of the current generation of STE devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA