Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 398: 130513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432540

RESUMO

Demonstrating outdoor cultivation of engineered microalgae at considerable scales is essential for their prospective large-scale deployment. Hence, this study focuses on the outdoor cultivation of an engineered Chlamydomonas reinhardtii strain, 3XAgBs-SQs, for bisabolene production under natural dynamic conditions of light and temperature. Our preliminary outdoor experiments showed improved growth, but frequent culture collapses in conventional Tris-acetate-phosphate medium. In contrast, modified high-salt medium (HSM) supported prolonged cell survival, outdoor. However, their subsequent outdoor scale-up from 250 mL to 5 L in HSM was effective with 10 g/L bicarbonate supplementation. Pulse amplitude modulation fluorometry and metabolomic analysis further validated their improved photosynthesis and uncompromised metabolic fluxes towards the biomass and the products (natural carotenoids and engineered bisabolene). These strains could produce 906 mg/L bisabolene and 54 mg/L carotenoids, demonstrating the first successful outdoor photoautotrophic cultivation of engineeredC. reinhardtii,establishing it as a one-cell two-wells biorefinery.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/metabolismo , Estudos Prospectivos , Chlamydomonas reinhardtii/metabolismo , Fotossíntese , Carotenoides/metabolismo
2.
Bioresour Technol ; 363: 127921, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36089131

RESUMO

In order to improve the potential of cyanobacterial cell factories, Synechococcus sp. PCC7002 was engineered as 'one cell-two wells bio-refinery', for ethylene ('heterologous' hydrocarbon) and carotenoids ('natural' metabolites) production, and demonstrating its outdoor performance. Although the cultures showed better production outdoor, they experienced multiple collapses during scale-up. Hence, flux balance analysis was performed which predicted higher ethylene production with increase in carbon input under outdoor light conditions. Furthermore, FBA predicted that ethylene production will not increase beyond a threshold carbon input flux, owing to limitations on ribulose-1,5-bisphosphate regeneration. Hence, a bicarbonate-supplementation strategy was devised. Cultures grown outdoor at optimal bicarbonate concentration (20 g/L) resulted in improved growth (0.141/h) and ethylene productivity (1.88 mL/L.h) for > 10 days, with enhanced carotenoid titres (40.4 mg/L). In a 100 L air-lift photo-bioreactor; cultures exhibited efficient ethylene (2.464 mL/L.h) and biomass (0.3 g/L.d) productivities, and carotenoids titres (64.4 mg/L), establishing a significant step towards commercialization.


Assuntos
Bicarbonatos , Synechococcus , Bicarbonatos/metabolismo , Carbono/metabolismo , Carotenoides/metabolismo , Etilenos/metabolismo , Synechococcus/metabolismo
3.
Bioresour Technol ; 341: 125852, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34479144

RESUMO

Cyanobacterial research is impeded by the substantial discrepancies between laboratory studies and outdoor performances, despite successful demonstrations of genetically engineered strains for array of compounds. Therefore, evaluation of adaptive responses is necessary to achieve outdoor scale-up cultivation of cyanobacteria. Under current study, cyanobacterium Synechococcus elongatusPCC7942 engineered for ethylene biosynthesis, was gradually acclimatised, ensuring sustained and progressive transition from laboratory to outdoor conditions. Bubble size of 4.9 ± 0.2 mm and air-flow rate of 0.05 vvm in BG11 supplemented with 5 g/L bicarbonate giving mass transfer coefficient (KLa) of 10.48 h-1 yielded highest specific growth rate (0.24 h-1) with the transformants. At the 100 L photobioreactor scale, ethylene productivity of 1.5 mL.L-1.h-1 was achieved. A comprehensive investigation on photosynthetic responses of the transformants adapted to the outdoor conditions exhibited interesting photosynthetic electron transport regulations, involving antenna density modulation in response to diurnal and dynamic light transitions, indicating successful transition.


Assuntos
Synechococcus , Etilenos , Laboratórios , Fotobiorreatores , Fotossíntese , Synechococcus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA