Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 306(7): 517-528, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27424770

RESUMO

Propionibacterium acnes has been detected in diseased human prostate tissue, and cell culture experiments suggest that the bacterium can establish a low-grade inflammation. Here, we investigated its impact on human primary prostate epithelial cells. Microarray analysis confirmed the inflammation-inducing capability of P. acnes but also showed deregulation of genes involved in the cell cycle. qPCR experiments showed that viable P. acnes downregulates a master regulator of cell cycle progression, FOXM1. Flow cytometry experiments revealed that P. acnes increases the number of cells in S-phase. We tested the hypothesis that a P. acnes-produced berninamycin-like thiopeptide is responsible for this effect, since it is related to the FOXM1 inhibitor siomycin. The thiopeptide biosynthesis gene cluster was strongly expressed; it is present in subtype IB of P. acnes, but absent from type IA, which is most abundant on human skin. A knock-out mutant lacking the gene encoding the berninamycin-like peptide precursor was unable to downregulate FOXM1 and to halt the cell cycle. Our study reveals a novel host cell-interacting activity of P. acnes.


Assuntos
Ciclo Celular , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Proteína Forkhead Box M1/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Propionibacterium acnes/patogenicidade , Próstata/microbiologia , Proteína Forkhead Box M1/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Masculino , Análise em Microsséries , Peptídeos/análise , Peptídeos/genética , Reação em Cadeia da Polimerase em Tempo Real
2.
Curr Stem Cell Rep ; 7(2): 72-84, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35251892

RESUMO

PURPOSE OF REVIEW: From invertebrates to vertebrates, the ability to sense nutrient availability is critical for survival. Complex organisms have evolved numerous signaling pathways to sense nutrients and dietary fluctuations, which influence many cellular processes. Although both overabundance and extreme depletion of nutrients can lead to deleterious effects, dietary restriction without malnutrition can increase lifespan and promote overall health in many model organisms. In this review, we focus on age-dependent changes in stem cell metabolism and dietary interventions used to modulate stem cell function in aging. RECENT FINDINGS: Over the last half-century, seminal studies have illustrated that dietary restriction confers beneficial effects on longevity in many model organisms. Many researchers have now turned to dissecting the molecular mechanisms by which these diets affect aging at the cellular level. One subpopulation of cells of particular interest are adult stem cells, the most regenerative cells of the body. It is generally accepted that the regenerative capacity of stem cells declines with age, and while the metabolic requirements of each vary across tissues, the ability of dietary interventions to influence stem cell function is striking. SUMMARY: In this review, we will focus primarily on how metabolism plays a role in adult stem cell homeostasis with respect to aging, with particular emphasis on intestinal stem cells while also touching on hematopoietic, skeletal muscle, and neural stem cells. We will also discuss key metabolic signaling pathways influenced by both dietary restriction and the aging process, and will examine their role in improving tissue homeostasis and lifespan. Understanding the mechanisms behind the metabolic needs of stem cells will help bridge the divide between a basic science interpretation of stem cell function and a whole-organism view of nutrition, thereby providing insight into potential dietary or therapeutic interventions.

3.
Cancer Discov ; 2(11): 1024-35, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22930729

RESUMO

UNLABELLED: Prostate cancer is the second most common cancer among men worldwide. Alterations in the DNA methylation pattern can be one of the leading causes for prostate cancer formation. This study is the first high-throughput sequencing study investigating genome-wide DNA methylation patterns in a large cohort of 51 tumor and 53 benign prostate samples using methylated DNA immunoprecipitation sequencing. Comparative analyses identified more than 147,000 cancer-associated epigenetic alterations. In addition, global methylation patterns show significant differences based on the TMPRSS2-ERG rearrangement status. We propose the hypermethylation of miR-26a as an alternative pathway of ERG rearrangement-independent EZH2 activation. The observed increase in differential methylation events in fusion-negative tumors can explain the tumorigenic process in the absence of genomic rearrangements. SIGNIFICANCE: In contrast to TMPRSS2-ERG -rearranged tumors, the pathomechanism for gene fusion-negative tumors is completely unclear. Using a sequencing-based approach, our work uncovers significant global epigenetic alterations in TMPRSS2-ERG gene fusion-negative tumors and provides a mechanistic explanation for the tumor formation process.


Assuntos
Metilação de DNA , MicroRNAs/genética , Proteínas de Fusão Oncogênica/genética , Complexo Repressor Polycomb 2/genética , Neoplasias da Próstata/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Epigenômica , Fusão Gênica , Genoma Humano , Humanos , Masculino , Neoplasias da Próstata/patologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA