Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Pathog ; 19(7): e1011437, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37450466

RESUMO

The molecular factors and genetic adaptations that contributed to the emergence of Mycobacterium tuberculosis (MTB) from an environmental Mycobacterium canettii-like ancestor, remain poorly investigated. In MTB, the PhoPR two-component regulatory system controls production and secretion of proteins and lipid virulence effectors. Here, we describe that several mutations, present in phoR of M. canettii relative to MTB, impact the expression of the PhoP regulon and the pathogenicity of the strains. First, we establish a molecular model of PhoR and show that some substitutions found in PhoR of M. canettii are likely to impact the structure and activity of this protein. Second, we show that STB-K, the most attenuated available M. canettii strain, displays lower expression of PhoP-induced genes than MTB. Third, we demonstrate that genetic swapping of the phoPR allele from STB-K with the ortholog from MTB H37Rv enhances expression of PhoP-controlled functions and the capacities of the recombinant strain to colonize human macrophages, the MTB target cells, as well as to cause disease in several mouse infection models. Fourth, we extended these observations to other M. canettii strains and confirm that PhoP-controlled functions are expressed at lower levels in most M. canettii strains than in M. tuberculosis. Our findings suggest that distinct PhoR variants have been selected during the evolution of tuberculosis bacilli, contributing to higher pathogenicity and persistence of MTB in the mammalian host.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Humanos , Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Tuberculose/microbiologia , Mamíferos
2.
Cell Microbiol ; 23(7): e13344, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33860624

RESUMO

The interactions between microbes and their hosts are among the most complex biological phenomena known today. The interaction may reach from overall beneficial interaction, as observed for most microbiome/microbiota related interactions to interaction with virulent pathogens, against which host cells have evolved sophisticated defence strategies. Among the latter, the confinement of invading pathogens in a phagosome plays a key role, which often results in the destruction of the invader, whereas some pathogens may counteract phagosomal arrest and survive by gaining access to the cytosol of the host cell. In the current review, we will discuss recent insights into this dynamic process of host-pathogen interaction, using Mycobacterium tuberculosis and related pathogenic mycobacteria as main examples.


Assuntos
Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/patogenicidade , Fagossomos/microbiologia , Tuberculose/microbiologia , Humanos , Fagocitose
3.
PLoS Pathog ; 14(6): e1007139, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29912964

RESUMO

Tuberculosis is the deadliest infectious disease worldwide. Although the BCG vaccine is widely used, it does not efficiently protect against pulmonary tuberculosis and an improved tuberculosis vaccine is therefore urgently needed. Mycobacterium tuberculosis uses different ESX/Type VII secretion (T7S) systems to transport proteins important for virulence and host immune responses. We recently reported that secretion of T7S substrates belonging to the mycobacteria-specific Pro-Glu (PE) and Pro-Pro-Glu (PPE) proteins of the PGRS (polymorphic GC-rich sequences) and MPTR (major polymorphic tandem repeat) subfamilies required both a functional ESX-5 system and a functional PPE38/71 protein for secretion. Inactivation of ppe38/71 and the resulting loss of PE_PGRS/PPE-MPTR secretion were linked to increased virulence of M. tuberculosis strains. Here, we show that a predicted total of 89 PE_PGRS/PPE-MPTR surface proteins are not exported by certain animal-adapted strains of the M. tuberculosis complex including M. bovis. This Δppe38/71-associated secretion defect therefore also occurs in the M. bovis-derived tuberculosis vaccine BCG and could be partially restored by introduction of the M. tuberculosis ppe38-locus. Epitope mapping of the PPE-MPTR protein PPE10, further allowed us to monitor T-cell responses in splenocytes from BCG/M. tuberculosis immunized mice, confirming the dependence of PPE10-specific immune-induction on ESX-5/PPE38-mediated secretion. Restoration of PE_PGRS/PPE-MPTR secretion in recombinant BCG neither altered global antigenic presentation or activation of innate immune cells, nor protective efficacy in two different mouse vaccination-infection models. This unexpected finding stimulates a reassessment of the immunomodulatory properties of PE_PGRS/PPE-MPTR proteins, some of which are contained in vaccine formulations currently in clinical evaluation.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/imunologia , Proteínas de Membrana/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Animais , Proteínas de Bactérias/genética , Feminino , Genoma Bacteriano , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Família Multigênica , Tuberculose/prevenção & controle , Virulência
4.
PLoS Pathog ; 12(7): e1005770, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27467705

RESUMO

Mycobacterium tuberculosis (Mtb), possesses at least three type VII secretion systems, ESX-1, -3 and -5 that are actively involved in pathogenesis and host-pathogen interaction. We recently showed that an attenuated Mtb vaccine candidate (Mtb Δppe25-pe19), which lacks the characteristic ESX-5-associated pe/ppe genes, but harbors all other components of the ESX-5 system, induces CD4+ T-cell immune responses against non-esx-5-associated PE/PPE protein homologs. These T cells strongly cross-recognize the missing esx-5-associated PE/PPE proteins. Here, we characterized the fine composition of the functional cross-reactive Th1 effector subsets specific to the shared PE/PPE epitopes in mice immunized with the Mtb Δppe25-pe19 vaccine candidate. We provide evidence that the Mtb Δppe25-pe19 strain, despite its significant attenuation, is comparable to the WT Mtb strain with regard to: (i) its antigenic repertoire related to the different ESX systems, (ii) the induced Th1 effector subset composition, (iii) the differentiation status of the Th1 cells induced, and (iv) its particular features at stimulating the innate immune response. Indeed, we found significant contribution of PE/PPE-specific Th1 effector cells in the protective immunity against pulmonary Mtb infection. These results offer detailed insights into the immune mechanisms underlying the remarkable protective efficacy of the live attenuated Mtb Δppe25-pe19 vaccine candidate, as well as the specific potential of PE/PPE proteins as protective immunogens.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Reações Cruzadas , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Células Th1
5.
Cell Microbiol ; 19(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28095608

RESUMO

Although phthiocerol dimycocerosates (DIM) are major virulence factors of Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, little is known about their mechanism of action. Localized in the outer membrane of mycobacterial pathogens, DIM are predicted to interact with host cell membranes. Interaction with eukaryotic membranes is a property shared with another virulence factor of Mtb, the early secretory antigenic target EsxA (also known as ESAT-6). This small protein, which is secreted by the type VII secretion system ESX-1 (T7SS/ESX-1), is involved in phagosomal rupture and cell death induced by virulent mycobacteria inside host phagocytes. In this work, by the use of several knock-out or knock-in mutants of Mtb or Mycobacterium bovis BCG strains and different cell biological assays, we present conclusive evidence that ESX-1 and DIM act in concert to induce phagosomal membrane damage and rupture in infected macrophages, ultimately leading to host cell apoptosis. These results identify an as yet unknown function for DIM in the infection process and open up a new research field for the study of the interaction of lipid and protein virulence factors of Mtb.


Assuntos
Antígenos de Bactérias/metabolismo , Apoptose/fisiologia , Proteínas de Bactérias/metabolismo , Lipídeos/fisiologia , Macrófagos/metabolismo , Mycobacterium bovis/patogenicidade , Mycobacterium tuberculosis/patogenicidade , Fagossomos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/patologia , Humanos , Macrófagos/microbiologia , Fagossomos/microbiologia , Células THP-1 , Fatores de Virulência
6.
PLoS Pathog ; 11(2): e1004650, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25658322

RESUMO

Mycobacterium tuberculosis (Mtb) uses efficient strategies to evade the eradication by professional phagocytes, involving--as recently confirmed--escape from phagosomal confinement. While Mtb determinants, such as the ESX-1 type VII secretion system, that contribute to this phenomenon are known, the host cell factors governing this important biological process are yet unexplored. Using a newly developed flow-cytometric approach for Mtb, we show that macrophages expressing the phagosomal bivalent cation transporter Nramp-1, are much less susceptible to phagosomal rupture. Together with results from the use of the phagosome acidification inhibitor bafilomycin, we demonstrate that restriction of phagosomal acidification is a prerequisite for mycobacterial phagosomal rupture and cytosolic contact. Using different in vivo approaches including an enrichment and screen for tracking rare infected phagocytes carrying the CD45.1 hematopoietic allelic marker, we here provide first and unique evidence of M. tuberculosis-mediated phagosomal rupture in mouse spleen and lungs and in numerous phagocyte types. Our results, linking the ability of restriction of phagosome acidification to cytosolic access, provide an important conceptual advance for our knowledge on host processes targeted by Mtb evasion strategies.


Assuntos
Sistemas de Secreção Bacterianos/imunologia , Proteínas de Transporte de Cátions/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Fagossomos/imunologia , Tuberculose/imunologia , Animais , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Mutantes , Fagossomos/genética , Tuberculose/genética , Tuberculose/patologia
7.
Microbiol Spectr ; 12(6): e0412623, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38700329

RESUMO

Four species of non-tuberculous mycobacteria (NTM) rated as biosafety level 1 or 2 (BSL-1/BSL-2) organisms and showing higher genomic similarity with Mycobacterium tuberculosis (Mtb) than previous comparator species Mycobacterium kansasii and Mycobacterium marinum were subjected to genomic and phenotypic characterization. These species named Mycobacterium decipiens, Mycobacterium lacus, Mycobacterium riyadhense, and Mycobacterium shinjukuense might represent "missing links" between low-virulent mycobacterial opportunists and the highly virulent obligate pathogen Mtb. We confirmed that M. decipiens is the closest NTM species to Mtb currently known and found that it has an optimal growth temperature of 32°C-35°C and not 37°C. M. decipiens showed resistance to rifampicin, isoniazid, and ethambutol, whereas M. lacus and M. riyadhense showed resistance to isoniazid and ethambutol. M. shinjukuense was sensitive to all three first-line TB drugs, and all four species were sensitive to bedaquiline, a third-generation anti-TB drug. Our results suggest these four NTM may be useful models for the identification and study of new anti-TB molecules, facilitated by their culture under non-BSL-3 conditions as compared to Mtb. M. riyadhense was the most virulent of the four species in cellular and mouse infection models. M. decipiens also multiplied in THP-1 cells at 35°C but was growth impaired at 37°C. Genomic comparisons showed that the espACD locus, essential for the secretion of ESX-1 proteins in Mtb, was present only in M. decipiens, which was able to secrete ESAT-6 and CFP-10, whereas secretion of these antigens varied in the other species, making the four species interesting examples for studying ESX-1 secretion mechanisms.IMPORTANCEIn this work, we investigated recently identified opportunistic mycobacterial pathogens that are genomically more closely related to Mycobacterium tuberculosis (Mtb) than previously used comparator species Mycobacterium kansasii and Mycobacterium marinum. We confirmed that Mycobacterium decipiens is the currently closest known species to the tubercle bacilli, represented by Mycobacterium canettii and Mtb strains. Surprisingly, the reference strain of Mycobacterium riyadhense (DSM 45176), which was purchased as a biosafety level 1 (BSL-1)-rated organism, was the most virulent of the four species in the tested cellular and mouse infection models, suggesting that a BSL-2 rating might be more appropriate for this strain than the current BSL-1 rating. Our work establishes the four NTM species as interesting study models to obtain new insights into the evolutionary mechanisms and phenotypic particularities of mycobacterial pathogens that likely have also impacted the evolution of the key pathogen Mtb.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Micobactérias não Tuberculosas , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/efeitos dos fármacos , Micobactérias não Tuberculosas/classificação , Micobactérias não Tuberculosas/crescimento & desenvolvimento , Humanos , Genoma Bacteriano/genética , Genômica , Fenótipo , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/microbiologia , Filogenia , Animais , Tuberculose/microbiologia , Farmacorresistência Bacteriana/genética , Camundongos
8.
Mol Microbiol ; 83(6): 1195-209, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22340629

RESUMO

The chromosome of Mycobacterium tuberculosis encodes five type VII secretion systems (ESX-1-ESX-5). While the role of the ESX-1 and ESX-3 systems in M. tuberculosis has been elucidated, predictions for the function of the ESX-5 system came from data obtained in Mycobacterium marinum, where it transports PPE and PE_PGRS proteins and modulates innate immune responses. To define the role of the ESX-5 system in M. tuberculosis, in this study, we have constructed five M. tuberculosis H37Rv ESX-5 knockout/deletion mutants, inactivating eccA(5), eccD(5), rv1794 and esxM genes or the ppe25-pe19 region. Whereas the Mtbrv1794ko displayed no obvious phenotype, the other four mutants showed defects in secretion of the ESX-5-encoded EsxN and PPE41, a representative member of the large PPE protein family. Strikingly, the MtbeccD(5) ko mutant also showed enhanced sensitivity to detergents and hydrophilic antibiotics. When the virulence of the five mutants was evaluated, the MtbeccD(5) ko and MtbΔppe25-pe19 mutants were found attenuated both in macrophages and in the severe combined immune-deficient mouse infection model. Altogether these findings indicate an essential role of ESX-5 for transport of PPE proteins, cell wall integrity and full virulence of M. tuberculosis, thereby opening interesting new perspectives for the study of this human pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Parede Celular/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Parede Celular/química , Parede Celular/genética , Células Cultivadas , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos SCID , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Transporte Proteico , Virulência
9.
Mol Ther Nucleic Acids ; 27: 1235-1248, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35282413

RESUMO

Cyclic (di)nucleotides act as universal second messengers endogenously produced by several pathogens. Specifically, the roles of c-di-AMP in Mycobacterium tuberculosis immunity and virulence have been largely explored, although its contribution to the safety and efficacy of live tuberculosis vaccines is less understood. In this study, we demonstrate that the synthesis of c-di-AMP is negatively regulated by the M. tuberculosis PhoPR virulence system. Accordingly, the live attenuated tuberculosis vaccine candidate M. tuberculosis vaccine (MTBVAC), based on double phoP and fadD26 deletions, produces more than 25- and 45-fold c-di-AMP levels relative to wild-type M. tuberculosis or the current vaccine bacille Calmette-Guérin (BCG), respectively. Secretion of this second messenger was exclusively detected in MTBVAC but not in M. tuberculosis or in BCG. We also demonstrate that c-di-AMP synthesis during in vitro cultivation of M. tuberculosis is a growth-phase- and medium-dependent phenotype. To uncover the role of this metabolite in the vaccine properties of MTBVAC, we constructed and validated knockout and overproducing/oversecreting derivatives by inactivating the disA or cnpB gene, respectively. All MTBVAC derivatives elicited superior interleukin-1ß (IL-1ß) responses compared with BCG during an in vitro infection of human macrophages. However, both vaccines failed to elicit interferon ß (IFNß) activation in this cellular model. We found that increasing c-di-AMP levels remarkably correlated with a safer profile of tuberculosis vaccines in the immunodeficient mouse model. Finally, we demonstrate that overproduction of c-di-AMP due to cnpB inactivation resulted in lower protection of MTBVAC, while the absence of c-di-AMP in the MTBVAC disA derivative maintains the protective efficacy of this vaccine in mice.

10.
EBioMedicine ; 55: 102761, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32361249

RESUMO

BACKGROUND: Human tuberculosis (TB) is caused by a plethora of Mycobacterium tuberculosis complex (MTBC) strains belonging to seven phylogenetic branches. Lineages 2, 3 and 4 are considered "modern" branches of the MTBC responsible for the majority of worldwide TB. Since the current BCG vaccine confers variable protection against pulmonary TB, new candidates are investigated. MTBVAC is the unique live attenuated vaccine based on M. tuberculosis in human clinical trials. METHODS: MTBVAC was originally constructed by unmarked phoP and fadD26 deletions in a clinical isolate belonging to L4. Here we construct new vaccines based on isogenic gene deletions in clinical isolates of the L2 and L3 modern lineages. These three vaccine candidates were characterized at molecular level and also in animal experiments of protection and safety. FINDINGS: Safety studies in immunocompromised mice showed that MTBVAC-L2 was less attenuated than BCG Pasteur, while the original MTBVAC was found even more attenuated than BCG and MTBVAC-L3 showed an intermediate phenotype. The three MTBVAC candidates showed similar or superior protection compared to BCG in immunocompetent mice vaccinated with each MTBVAC candidate and challenged with three representative strains of the modern lineages. INTERPRETATION: MTBVAC vaccines, based on double phoP and fadD26 deletions, protect against TB independently of the phylogenetic linage used as template strain for their construction. Nevertheless, lineage L4 confers the best safety profile. FUNDING: European Commission (TBVAC2020, H2020-PHC-643381), Spanish Ministry of Science (RTI2018-097625-B-I00), Instituto de Salud Carlos III (PI18/0336), Gobierno de Aragón/Fondo Social Europeo and the French National Research Council (ANR-10-LABX-62-IBEID, ANR-16-CE35-0009, ANR-16-CE15-0003).


Assuntos
Proteínas de Bactérias/imunologia , Ligases/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/prevenção & controle , Animais , Vacina BCG/administração & dosagem , Vacina BCG/biossíntese , Vacina BCG/genética , Proteínas de Bactérias/genética , Feminino , Deleção de Genes , Expressão Gênica , Patrimônio Genético , Humanos , Imunogenicidade da Vacina , Ligases/deficiência , Ligases/genética , Camundongos , Camundongos SCID , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Segurança do Paciente , Análise de Sobrevida , Vacinas contra a Tuberculose/biossíntese , Vacinas contra a Tuberculose/genética , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/mortalidade , Vacinação , Vacinas Atenuadas , População Branca
11.
Artigo em Inglês | MEDLINE | ID: mdl-32923411

RESUMO

Mycobacterium tuberculosis (Mtb) synthesizes a variety of atypical lipids that are exposed at the cell surface and help the bacterium infect macrophages and escape elimination by the cell's immune responses. In the present study, we investigate the mechanism of action of one family of hydrophobic lipids, the phthiocerol dimycocerosates (DIM/PDIM), major lipid virulence factors. DIM are transferred from the envelope of Mtb to host membranes during infection. Using the polarity-sensitive fluorophore C-Laurdan, we visualized that DIM decrease the membrane polarity of a supported lipid bilayer put in contact with mycobacteria, even beyond the site of contact. We observed that DIM activate the complement receptor 3, a predominant receptor for phagocytosis of Mtb by macrophages. DIM also increased the activity of membrane-permeabilizing effectors of Mtb, among which the virulence factor EsxA. This is consistent with previous observations that DIM help Mtb disrupt host cell membranes. Taken together, our data show that transferred DIM spread within the target membrane, modify its physical properties and increase the activity of host cell receptors and bacterial effectors, diverting in a non-specific manner host cell functions. We therefore bring new insight into the molecular mechanisms by which DIM increase Mtb's capability to escape the cell's immune responses.


Assuntos
Mycobacterium tuberculosis , Lipídeos , Macrófagos , Fagocitose
12.
Nat Commun ; 11(1): 684, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019932

RESUMO

Mycobacterium tuberculosis (Mtb) strains are classified into different phylogenetic lineages (L), three of which (L2/L3/L4) emerged from a common progenitor after the loss of the MmpS6/MmpL6-encoding Mtb-specific deletion 1 region (TbD1). These TbD1-deleted "modern" lineages are responsible for globally-spread tuberculosis epidemics, whereas TbD1-intact "ancestral" lineages tend to be restricted to specific geographical areas, such as South India and South East Asia (L1) or East Africa (L7). By constructing and characterizing a panel of recombinant TbD1-knock-in and knock-out strains and comparison with clinical isolates, here we show that deletion of TbD1 confers to Mtb a significant increase in resistance to oxidative stress and hypoxia, which correlates with enhanced virulence in selected cellular, guinea pig and C3HeB/FeJ mouse infection models, the latter two mirroring in part the development of hypoxic granulomas in human disease progression. Our results suggest that loss of TbD1 at the origin of the L2/L3/L4 Mtb lineages was a key driver for their global epidemic spread and outstanding evolutionary success.


Assuntos
Evolução Molecular , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Animais , Cobaias , Humanos , Camundongos , Camundongos Endogâmicos C3H , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/patogenicidade , Filogenia , Deleção de Sequência , Virulência
13.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-32047597

RESUMO

The borderline between virulence and efficacy in live attenuated vaccine strains is often blurred and this is also the case for the Bacillus Calmette-Guérin (BCG), the only currently licensed anti-tuberculosis vaccine used on a large, global scale, which was obtained almost 100 years ago. While BCG is more than 99% identical at the genome level to Mycobacterium tuberculosis, the causative pathogen of human tuberculosis, some important differences in virulence factors cause naturally irreversible attenuation and safety of this vaccine in the immunocompetent host. Some of these virulence factors are involved in persistence capacities of the vaccine strains and also represent strong immunogens, responsible for inducing different host signaling pathways, which have to be taken into consideration for the development of revised and new vaccine strains. Here we discuss a number of selected mycobacterial features in relation to their biological functions and potential impact on virulence and vaccine efficacy.


Assuntos
Imunogenicidade da Vacina , Mycobacterium tuberculosis/patogenicidade , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacina BCG/imunologia , Humanos , Mycobacterium tuberculosis/genética , Transdução de Sinais , Virulência , Fatores de Virulência/genética
14.
Genome Biol Evol ; 10(8): 1858-1874, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010947

RESUMO

Mycobacterium africanum consists of Lineages L5 and L6 of the Mycobacterium tuberculosis complex (MTBC) and causes human tuberculosis in specific regions of Western Africa, but is generally not transmitted in other parts of the world. Since M. africanum is evolutionarily closely placed between the globally dispersed Mycobacterium tuberculosis and animal-adapted MTBC-members, these lineages provide valuable insight into M. tuberculosis evolution. Here, we have collected 15 M. africanum L5 strains isolated in France over 4 decades. Illumina sequencing and phylogenomic analysis revealed a previously underappreciated diversity within L5, which consists of distinct sublineages. L5 strains caused relatively high levels of extrapulmonary tuberculosis and included multi- and extensively drug-resistant isolates, especially in the newly defined sublineage L5.2. The specific L5 sublineages also exhibit distinct phenotypic characteristics related to in vitro growth, protein secretion and in vivo immunogenicity. In particular, we identified a PE_PGRS and PPE-MPTR secretion defect specific for sublineage L5.2, which was independent of PPE38. Furthermore, L5 isolates were able to efficiently secrete and induce immune responses against ESX-1 substrates contrary to previous predictions. These phenotypes of Type VII protein secretion and immunogenicity provide valuable information to better link genome sequences to phenotypic traits and thereby understand the evolution of the MTBC.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Genômica , Mycobacterium/genética , Mycobacterium/imunologia , Filogenia , Adulto , Animais , Pareamento de Bases/genética , Biologia Computacional , Farmacorresistência Bacteriana/efeitos dos fármacos , Feminino , Marcadores Genéticos , Genótipo , Humanos , Isoniazida/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mycobacterium/efeitos dos fármacos , Mycobacterium/isolamento & purificação , Fenótipo , Deleção de Sequência/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
15.
Cell Rep ; 23(4): 1072-1084, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694886

RESUMO

The pathogenic potential of Mycobacterium tuberculosis largely depends on ESX secretion systems exporting members of the multigenic Esx, Esp, and PE/PPE protein families. To study the secretion and regulation patterns of these proteins while circumventing immune cross-reactions due to their extensive sequence homologies, we developed an approach that relies on the recognition of their MHC class II epitopes by highly discriminative T cell receptors (TCRs) of a panel of T cell hybridomas. The latter were engineered so that each expresses a unique fluorescent reporter linked to specific antigen recognition. The resulting polychromatic and multiplexed imaging assay enabled us to measure the secretion of mycobacterial effectors inside infected host cells. We applied this novel technology to a large panel of mutants, clinical isolates, and host-cell types to explore the host-mycobacteria interplay and its impact on the intracellular bacterial secretome, which also revealed the unexpected capacity of phagocytes from lung granuloma to present mycobacterial antigens via MHC class II.


Assuntos
Sistemas de Secreção Bacterianos/imunologia , Epitopos de Linfócito T/imunologia , Granuloma do Sistema Respiratório , Mycobacterium tuberculosis/imunologia , Fagócitos , Tuberculose Pulmonar , Animais , Linhagem Celular Tumoral , Granuloma do Sistema Respiratório/imunologia , Granuloma do Sistema Respiratório/microbiologia , Granuloma do Sistema Respiratório/patologia , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos , Fagócitos/imunologia , Fagócitos/microbiologia , Fagócitos/patologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia
16.
Cell Rep ; 18(11): 2752-2765, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297677

RESUMO

Recent insights into the mechanisms by which Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is recognized by cytosolic nucleotide sensors have opened new avenues for rational vaccine design. The only licensed anti-tuberculosis vaccine, Mycobacterium bovis BCG, provides limited protection. A feature of BCG is the partial deletion of the ESX-1 type VII secretion system, which governs phagosomal rupture and cytosolic pattern recognition, key intracellular phenotypes linked to increased immune signaling. Here, by heterologously expressing the esx-1 region of Mycobacterium marinum in BCG, we engineered a low-virulence, ESX-1-proficient, recombinant BCG (BCG::ESX-1Mmar) that induces the cGas/STING/TBK1/IRF-3/type I interferon axis and enhances AIM2 and NLRP3 inflammasome activity, resulting in both higher proportions of CD8+ T cell effectors against mycobacterial antigens shared with BCG and polyfunctional CD4+ Th1 cells specific to ESX-1 antigens. Importantly, independent mouse vaccination models show that BCG::ESX-1Mmar confers superior protection relative to parental BCG against challenges with highly virulent M. tuberculosis.


Assuntos
Vacina BCG/imunologia , Proteínas de Bactérias/metabolismo , Citosol/imunologia , Mycobacterium marinum/patogenicidade , Transdução de Sinais , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinas Sintéticas/imunologia , Animais , Teste de Complementação Genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Imunização , Camundongos SCID , Fagossomos/metabolismo , Células Th1/imunologia , Tuberculose/microbiologia , Virulência
17.
Nat Rev Microbiol ; 14(11): 677-691, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27665717

RESUMO

Mycobacterium tuberculosis uses sophisticated secretion systems, named 6 kDa early secretory antigenic target (ESAT6) protein family secretion (ESX) systems (also known as type VII secretion systems), to export a set of effector proteins that helps the pathogen to resist or evade the host immune response. Since the discovery of the esx loci during the M. tuberculosis H37Rv genome project, structural biology, cell biology and evolutionary analyses have advanced our knowledge of the function of these systems. In this Review, we highlight the intriguing roles that these studies have revealed for ESX systems in bacterial survival and pathogenicity during infection with M. tuberculosis. Furthermore, we discuss the diversity of ESX systems that has been described among mycobacteria and selected non-mycobacterial species. Finally, we consider how our knowledge of ESX systems might be applied to the development of novel strategies for the treatment and prevention of disease.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Molecular , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia , Sistemas de Secreção Tipo VII/fisiologia , Animais , Antígenos de Bactérias , Proteínas de Bactérias/genética , Transporte Biológico , Humanos , Mycobacterium tuberculosis/fisiologia , Transporte Proteico , Tuberculose/imunologia , Tuberculose/prevenção & controle , Tuberculose/terapia , Sistemas de Secreção Tipo VII/genética
18.
Nat Genet ; 45(2): 172-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23291586

RESUMO

Global spread and limited genetic variation are hallmarks of M. tuberculosis, the agent of human tuberculosis. In contrast, Mycobacterium canettii and related tubercle bacilli that also cause human tuberculosis and exhibit unusual smooth colony morphology are restricted to East Africa. Here, we sequenced and analyzed the whole genomes of five representative strains of smooth tubercle bacilli (STB) using Sanger (4-5× coverage), 454/Roche (13-18× coverage) and/or Illumina DNA sequencing (45-105× coverage). We show that STB isolates are highly recombinogenic and evolutionarily early branching, with larger genome sizes, higher rates of genetic variation, fewer molecular scars and distinct CRISPR-Cas systems relative to M. tuberculosis. Despite the differences, all tuberculosis-causing mycobacteria share a highly conserved core genome. Mouse infection experiments showed that STB strains are less persistent and virulent than M. tuberculosis. We conclude that M. tuberculosis emerged from an ancestral STB-like pool of mycobacteria by gain of persistence and virulence mechanisms, and we provide insights into the molecular events involved.


Assuntos
Adaptação Biológica/genética , Adaptação Biológica/imunologia , Evolução Molecular , Variação Genética , Genoma Bacteriano/genética , Mycobacterium tuberculosis/genética , Filogenia , Adaptação Biológica/fisiologia , Animais , Sequência de Bases , Análise por Conglomerados , Genômica , Sequências Repetidas Invertidas/genética , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/patogenicidade , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Especificidade da Espécie , Baço/virologia , Virulência
19.
Cell Host Microbe ; 11(4): 352-63, 2012 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-22520463

RESUMO

The genome of Mycobacterium tuberculosis (Mtb) encodes five type VII secretion systems, ESX-1 to ESX-5, most of which are associated with genes encoding PE/PPE proteins, named after their N-terminal Pro-Glu (PE) or Pro-Pro-Glu (PPE) motifs. Here, we describe the strong T cell immunogenicity of the ESX-5-encoded PE/PPE proteins, which share a large panel of cross-reactive CD4(+) epitopes with substantial numbers of their ESX-5-nonassociated PE/PPE homologs. The immunogenicity of these numerous PE/PPE proteins is dependent on their export by a functional EccD(5), the predicted transmembrane channel of the ESX-5 secretion apparatus. The Mtb Δppe25-pe19 mutant deleted for all ESX-5-associated pe and ppe genes, although highly attenuated in immunocompetent mice, remains able to induce immunity against the ESX-5-associated PE/PPE virulence factors, via cross-reactivity with their numerous homologs, and against the ESX-1 virulence factors ESAT-6/CFP-10. The Δppe25-pe19 strain is strongly protective against Mtb infection in mice and represents a potential antituberculosis vaccine candidate.


Assuntos
Proteínas de Bactérias/imunologia , Sistemas de Secreção Bacterianos , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/microbiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos/imunologia , Variação Antigênica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Reações Cruzadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID , Dados de Sequência Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Transporte Proteico , Tuberculose/imunologia , Vacinas contra a Tuberculose/química , Vacinas contra a Tuberculose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA