Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Microbiol ; 15(11): 3077-86, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23682956

RESUMO

Biological oxidation of methane to methanol by aerobic bacteria is catalysed by two different enzymes, the cytoplasmic or soluble methane monooxygenase (sMMO) and the membrane-bound or particulate methane monooxygenase (pMMO). Expression of MMOs is controlled by a 'copper-switch', i.e. sMMO is only expressed at very low copper : biomass ratios, while pMMO expression increases as this ratio increases. Methanotrophs synthesize a chalkophore, methanobactin, for the binding and import of copper. Previous work suggested that methanobactin was formed from a polypeptide precursor. Here we report that deletion of the gene suspected to encode for this precursor, mbnA, in Methylosinus trichosporium OB3b, abolishes methanobactin production. Further, gene expression assays indicate that methanobactin, together with another polypeptide of previously unknown function, MmoD, play key roles in regulating expression of MMOs. Based on these data, we propose a general model explaining how expression of the MMO operons is regulated by copper, methanobactin and MmoD. The basis of the 'copper-switch' is MmoD, and methanobactin amplifies the magnitude of the switch. Bioinformatic analysis of bacterial genomes indicates that the production of methanobactin-like compounds is not confined to methanotrophs, suggesting that its use as a metal-binding agent and/or role in gene regulation may be widespread in nature.


Assuntos
Cobre/metabolismo , Imidazóis/metabolismo , Methylosinus trichosporium/genética , Oligopeptídeos/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Transporte Biológico , Deleção de Genes , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Metano/metabolismo , Metanol/metabolismo , Methylosinus trichosporium/metabolismo , Oligopeptídeos/biossíntese , Óperon , Oxirredução , Oxigenases/biossíntese
2.
mBio ; 13(3): e0024722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35575546

RESUMO

Methane is a potent greenhouse gas in the atmosphere, and its concentration has continued to increase in recent decades. Aerobic methanotrophs, bacteria that use methane as the sole carbon source, are an important biological sink for methane, and they are widely distributed in the natural environment. However, relatively little is known on how methanotroph activity is regulated by nutrients, particularly phosphorus (P). P is the principal nutrient constraining plant and microbial productivity in many ecosystems, ranging from agricultural land to the open ocean. Using a model methanotrophic bacterium, Methylosinus trichosporium OB3b, we demonstrate here that this bacterium can produce P-free glycolipids to replace membrane phospholipids in response to P limitation. The formation of the glycolipid monoglucuronic acid diacylglycerol requires plcP-agt genes since the plcP-agt mutant is unable to produce this glycolipid. This plcP-agt-mediated lipid remodeling pathway appears to be important for M. trichosporium OB3b to cope with P stress, and the mutant grew significantly slower under P limitation. Interestingly, comparative genomics analysis shows that the ability to perform lipid remodeling appears to be a conserved trait in proteobacterial methanotrophs; indeed, plcP is found in all proteobacterial methanotroph genomes, and plcP transcripts from methanotrophs are readily detectable in metatranscriptomics data sets. Together, our study provides new insights into the adaptation to P limitation in this ecologically important group of bacteria. IMPORTANCE Methane is a potent greenhouse gas in the atmosphere, and its concentration has continued to increase steadily in recent decades. In the natural environment, bacteria known as methanotrophs help mitigate methane emissions at no cost to human beings. However, relatively little is known regarding how methane oxidation activity in methanotrophs is regulated by soil nutrients, particularly phosphorus. Here, we show that methanotrophs can modify their membrane in response to phosphorus limitation and that the ability to change membrane lipids is important for methanotroph activity. Genome and metatranscriptome analyses suggest that such an adaptation strategy appears to be strictly conserved in all proteobacterial methanotrophs and is used by these bacteria in the natural environment. Together, our study provides a plausible molecular mechanism for better understanding the role of phosphorus on methane oxidation in the natural environment.


Assuntos
Gases de Efeito Estufa , Methylosinus trichosporium , Bactérias/genética , Ecossistema , Glicolipídeos , Humanos , Lipídeos de Membrana , Metano/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Fosfatos , Fósforo , Proteobactérias/metabolismo
4.
Appl Environ Microbiol ; 76(13): 4530-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20472738

RESUMO

Methylocella silvestris BL2, a facultative methane utilizer, can grow on monomethylamine (MMA) as a sole carbon and nitrogen source. No activity of MMA dehydrogenase was detectable. Instead, this bacterium utilizes a methylated amino acid pathway (gamma-glutamylmethylamide [GMA] and N-methylglutamate [NMG]) for MMA metabolism. The activities of the two key enzymes in this pathway, GMA synthetase and NMG dehydrogenase, were found when the bacterium was grown on MMA. GMA was detected by high-performance liquid chromatography-mass spectrometry only when the bacterium was grown on MMA but not when it was grown on methanol. Proteomic analysis of soluble and membrane fractions of the proteome from MMA- and methanol-grown cultures revealed that an eight-gene cluster (Msil2632 to Msil2639) was induced by MMA and cotranscribed as an operon, as shown by reverse transcription-PCR. GMA-dissimilating enzyme activity was also detected when it was grown on MMA. Formaldehyde and ammonium production from GMA was dependent on glutamate but not on alpha-ketoglutarate. Marker exchange mutagenesis of a putative GMAS gene homologue (gmas, Msil2635) within this eight-gene cluster, with a kanamycin gene cassette, abolished growth of M. silvestris on MMA as either a sole carbon or a sole nitrogen source. Overall, our results suggest that gmas is essential in MMA metabolism by M. silvestris.


Assuntos
Beijerinckiaceae/metabolismo , Glutamatos/metabolismo , Metilaminas/metabolismo , Beijerinckiaceae/enzimologia , Beijerinckiaceae/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Ligases/genética , Ligases/metabolismo , Espectrometria de Massas , Família Multigênica , Oxirredutases/genética , Oxirredutases/metabolismo , Proteômica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
FEMS Microbiol Lett ; 301(2): 181-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19878324

RESUMO

Methanotrophs oxidize methane to methanol using the enzyme methane monooxygenase. Methylosinus trichosporium OB3b has two such enzymes: a membrane-bound particulate methane monooxygenase (pMMO) and a soluble, cytoplasmic methane monooxygenase (sMMO). In methanotrophs possessing both enzymes, the expression of the genes encoding sMMO and pMMO is regulated by copper ions, with sMMO expressed solely when copper is limiting. Virtually nothing is known about the specific machinery involved in the copper-regulated transcription of mmo genes except the identification of two proteins necessary for the expression: a sigma(54)-dependent transcriptional activator, MmoR, and a putative GroEL-like chaperone, MmoG. Genes encoding mmoR and mmoG are located immediately upstream of those encoding sMMO in the genome of M. trichosporium OB3b. Here, we use a green fluorescent protein promoter probe vector to show that nearly the complete intergenic DNA sequence between mmoG and mmoX is absolutely required for transcriptional activation. Furthermore, we used gel-shift assays to demonstrate that both MmoR and MmoG were required for protein binding to this region of DNA.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Methylosinus trichosporium/enzimologia , Methylosinus trichosporium/genética , Oxigenases/genética , Ativação Transcricional , Fusão Gênica Artificial , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Ordem dos Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Methylosinus trichosporium/metabolismo , Oxigenases/biossíntese , Regiões Promotoras Genéticas , Ligação Proteica
6.
Microbiology (Reading) ; 152(Pt 10): 2931-2942, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17005974

RESUMO

The soluble methane monooxygenase (sMMO) is a key enzyme for methane oxidation, and is found in only some methanotrophs, including Methylosinus sporium 5. sMMO expression is regulated at the level of transcription from a sigma(54) promoter by a copper-switch, and is only expressed when the copper-to-biomass ratio during growth is low. Extensive phylogenetic and genetic analyses of sMMOs and other soluble di-iron monooxygenases reveal that these enzymes have only been acquired relatively recently through horizontal gene transfer. In this study, further evidence of horizontal gene transfer was obtained, through cloning and sequencing of the genes encoding the sMMO enzyme complex plus the regulatory genes mmoG and mmoR, and identification of a duplicate copy of the mmoX gene in Ms. sporium. mmoX encodes the alpha subunit of the hydroxylase of the sMMO enzyme, which constitutes the active site (Prior & Dalton, 1985). The mmoX genes were characterized at the molecular and biochemical levels. Although both copies were transcribed, only mmoX copy 1 was essential for sMMO activity. Construction of an sMMO(-) mutant by marker-exchange mutagenesis gave some possible insights into the role of the water-soluble pigment in siderophore-mediated iron acquisition. Finally, the amenability of Ms. sporium to genetic manipulation was demonstrated by complementing the sMMO(-) mutant by heterologous expression of sMMO genes from Methylosinus trichosporium OB3b and Methylococcus capsulatus (Bath), and it was shown that Ms. sporium could be used as an alternative model organism for molecular analysis of MMO regulation.


Assuntos
Duplicação Gênica , Genes Bacterianos , Methylosinus/enzimologia , Oxigenases/genética , Sítios de Ligação/genética , Southern Blotting , Clonagem Molecular , Análise Mutacional de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Deleção de Genes , Genes Reguladores , Teste de Complementação Genética , Ferro/metabolismo , Methylosinus/genética , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Óperon , Filogenia , Pigmentos Biológicos/fisiologia , Subunidades Proteicas/genética , Análise de Sequência de DNA
7.
Microbiology (Reading) ; 149(Pt 7): 1771-1784, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12855729

RESUMO

The methanotrophic bacterium Methylosinus trichosporium OB3b converts methane to methanol using two distinct forms of methane monooxygenase (MMO) enzyme: a cytoplasmic soluble form (sMMO) and a membrane-bound form (pMMO). The transcription of these two operons is known to proceed in a reciprocal fashion with sMMO expressed at low copper-to-biomass ratios and pMMO at high copper-to-biomass ratios. Transcription of the smmo operon is initiated from a sigma(N) promoter 5' of mmoX. In this study the genes encoding sigma(N) (rpoN) and a typical sigma(N)-dependent transcriptional activator (mmoR) were cloned and sequenced. mmoR, a regulatory gene, and mmoG, a gene encoding a GroEL homologue, lie 5' of the structural genes for the sMMO enzyme. Subsequent mutation of rpoN and mmoR by marker-exchange mutagenesis resulted in strains Gm1 and JS1, which were unable to express functional sMMO or initiate transcription of mmoX. An rpoN mutant was also unable to fix nitrogen or use nitrate as sole nitrogen source, indicating that sigma(N) plays a role in both nitrogen and carbon metabolism in Ms. trichosporium OB3b. The data also indicate that mmoG is transcribed in a sigma(N)- and MmoR-independent manner. Marker-exchange mutagenesis of mmoG revealed that MmoG is necessary for smmo gene transcription and activity and may be an MmoR-specific chaperone required for functional assembly of transcriptionally competent MmoR in vivo. The data presented allow the proposal of a more complete model for copper-mediated regulation of smmo gene expression.


Assuntos
Proteínas de Ligação a DNA , Genes Bacterianos , Methylosinus trichosporium/enzimologia , Methylosinus trichosporium/genética , Oxigenases/genética , Oxigenases/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Vetores Genéticos , Modelos Biológicos , Dados de Sequência Molecular , Família Multigênica , Mutagênese , Nitrogênio/metabolismo , Fases de Leitura Aberta , Óperon , Filogenia , Plasmídeos/genética , RNA Polimerase Sigma 54 , Fator sigma/genética , Solubilidade , Transcrição Gênica
8.
Appl Environ Microbiol ; 68(1): 289-96, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11772638

RESUMO

Marinosulfonomonas methylotropha strain TR3 is a marine methylotroph that uses methanesulfonic acid (MSA) as a sole carbon and energy source. The genes from M. methylotropha strain TR3 encoding methanesulfonate monooxygenase, the enzyme responsible for the initial oxidation of MSA to formaldehyde and sulfite, were cloned and sequenced. They were located on two gene clusters on the chromosome of this bacterium. A 5.0-kbp HindIII fragment contained msmA, msmB, and msmC, encoding the large and small subunits of the hydroxylase component and the ferredoxin component, respectively, of the methanesulfonate monooxygenase, while a 6.5-kbp HindIII fragment contained duplicate copies of msmA and msmB, as well as msmD, encoding the reductase component of methanesulfonate. Both sets of msmA and msmB genes were virtually identical, and the derived msmA and msmB sequences of M. methylotropha strain TR3, compared with the corresponding hydroxylase from the terrestrial MSA utilizer Methylosulfonomonas methylovora strain M2 were found to be 82 and 69% identical. The msmA gene was investigated as a functional gene probe for detection of MSA-utilizing bacteria. PCR primers spanning a region of msmA which encoded a unique Rieske [2Fe-2S] binding region were designed. These primers were used to amplify the corresponding msmA genes from newly isolated Hyphomicrobium, Methylobacterium, and Pedomicrobium species that utilized MSA, from MSA enrichment cultures, and from DNA samples extracted directly from the environment. The high degree of identity of these msmA gene fragments, compared to msmA sequences from extant MSA utilizers, indicated the effectiveness of these PCR primers in molecular microbial ecology.


Assuntos
Alphaproteobacteria/genética , Proteínas de Bactérias/genética , Complexo III da Cadeia de Transporte de Elétrons , Genes Duplicados , Mesilatos/metabolismo , Oxigenases de Função Mista/genética , Família Multigênica , Alphaproteobacteria/classificação , Alphaproteobacteria/enzimologia , Alphaproteobacteria/isolamento & purificação , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sondas de DNA/genética , Microbiologia Ambiental , Proteínas Ferro-Enxofre/genética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA