Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biol ; 166(7): 983-90, 2004 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-15381686

RESUMO

Saltatory electric conduction requires clustered voltage-gated sodium channels (VGSCs) at axon initial segments (AIS) and nodes of Ranvier (NR). A dense membrane undercoat is present at these sites, which is thought to be key for the focal accumulation of channels. Here, we prove that betaIVSigma1 spectrin, the only betaIV spectrin with an actin-binding domain, is an essential component of this coat. Specifically, betaIVSigma1 coexists with betaIVSigma6 at both AIS and NR, being the predominant spectrin at AIS. Removal of betaIVSigma1 alone causes the disappearance of the nodal coat, an increased diameter of the NR, and the presence of dilations filled with organelles. Moreover, in myelinated cochlear afferent fibers, VGSC and ankyrin G clusters appear fragmented. These ultrastructural changes can explain the motor and auditory neuropathies present in betaIVSigma1 -/- mice and point to the betaIVSigma1 spectrin isoform as a master-stabilizing factor of AIS/NR membranes.


Assuntos
Axônios/metabolismo , Membrana Celular/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Sistema Nervoso/embriologia , Nós Neurofibrosos/metabolismo , Canais de Sódio/metabolismo , Espectrina/fisiologia , Animais , Animais Recém-Nascidos , Anquirinas/genética , Anquirinas/metabolismo , Vias Auditivas/anormalidades , Vias Auditivas/patologia , Vias Auditivas/ultraestrutura , Axônios/ultraestrutura , Membrana Celular/genética , Membrana Celular/ultraestrutura , Nervo Coclear/anormalidades , Nervo Coclear/patologia , Nervo Coclear/ultraestrutura , Potenciais Evocados Auditivos/genética , Feminino , Perda Auditiva/genética , Perda Auditiva/patologia , Perda Auditiva/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/ultraestrutura , Organelas/metabolismo , Organelas/patologia , Organelas/ultraestrutura , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Nós Neurofibrosos/patologia , Nós Neurofibrosos/ultraestrutura , Canais de Sódio/genética , Canais de Sódio/ultraestrutura , Espectrina/genética
2.
Dev Neurobiol ; 67(1): 108-22, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17443776

RESUMO

The inner ear spiral ganglion is populated by bipolar neurons connecting the peripheral sensory receptors, the hair cells, with central neurons in auditory brain stem nuclei. Hearing impairment is often a consequence of hair cell death, e.g., from acoustic trauma. When deprived of their peripheral targets, the spiral ganglion neurons (SGNs) progressively degenerate. For effective clinical treatment using cochlear prostheses, it is essential to maintain the SGN population. To investigate their survival dependence, synaptogenesis, and regenerative capacity, adult mouse SGNs were separated from hair cells and studied in vitro in the presence of various neurotrophins and growth factors. Coadministration of fibroblast growth factor 2 (FGF-2) and glial cell line-derived neurotrophic factor (GDNF) provided support for long-term survival, while FGF-2 alone could strongly promote neurite regeneration. Fibroblast growth factor receptor FGFR-3-IIIc was found to upregulate and translocate to the nucleus in surviving SGNs. Surviving SGNs formed contacts with other SGNs after they were deprived of the signals from the hair cells. In coculture experiments, neurites extending from SGNs projected toward hair cells. Interestingly, adult mouse spiral ganglion cells could carry out both symmetric and asymmetric cell division and give rise to new neurons. The authors propose that a combination of FGF-2 and GDNF could be an efficient route for clinical intervention of secondary degeneration of SGNs. The authors also demonstrate that the adult mammalian inner ear retains progenitor cells, which could commit neurogenesis.


Assuntos
Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Gânglio Espiral da Cóclea/citologia , Sinapses/fisiologia , Análise de Variância , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Regeneração Nervosa/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Organogênese/efeitos dos fármacos , Organogênese/fisiologia , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sinapses/efeitos dos fármacos
3.
Brain Cell Biol ; 35(2-3): 187-201, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17957483

RESUMO

It is now well-established that an active cross-talk occurs between neurons and glial cells, in the adult as well as in the developing and regenerating nervous systems. These functional interactions not only actively modulate synaptic transmission, but also support neuronal growth and differentiation. We have investigated the possible existence of a reciprocal interaction between inner ear vestibular neurons and Schwann cells maintained in primary cultures. We show that ATP released by the extending vestibular axons elevates intracellular calcium levels within Schwann cells. Purinergic activation of the Schwann P2X(7) receptor induces the release of neurotrophin BDNF, which occurs via a regulated, tetanus-toxin sensitive, vesicular pathway. BDNF, in turn, is required by the vestibular neuron to support its own survival and growth. Given the massive release of ATP during tissue damage, cross-talk between vestibular neurons and Schwann cells could play a primary role during regeneration.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regeneração Nervosa/fisiologia , Neurônios Aferentes/metabolismo , Células de Schwann/metabolismo , Nervo Vestibular/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Regeneração Nervosa/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2 , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/fisiologia , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X7 , Células de Schwann/efeitos dos fármacos , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Nervo Vestibular/citologia , Nervo Vestibular/efeitos dos fármacos
4.
Biophys J ; 85(6): 3991-4001, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645088

RESUMO

Deconvolution algorithms are widely used in conventional fluorescence microscopy, but they remain difficult to apply to deep imaging systems such as confocal and two-photon microscopy, due to the practical difficulty of measuring the system's point spread function (PSF), especially in biological experiments. Since a separate PSF measurement performed under the design optical conditions of the microscope cannot reproduce the true experimental conditions prevailing in situ, the most natural approach to solve the problem is to extract the PSF from the images themselves. We investigate here the approach of cropping an approximate PSF directly from the images, by exploiting the presence of small structures within the samples under study. This approach turns out to be practical in many cases, allowing significantly better restorations than with a design PSF obtained by imaging fluorescent beads in gel. We demonstrate the advantages of this approach with a number of deconvolution experiments performed both on artificially blurred and noisy test images, and on real confocal images taken within an in vitro preparation of the mouse hearing organ.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Algoritmos , Animais , Orelha Interna/patologia , Orelha Interna/ultraestrutura , Camundongos , Microscopia de Fluorescência
5.
Development ; 130(8): 1479-91, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12620975

RESUMO

Neurotrophins have multiple functions during peripheral nervous system development such as controlling neuronal survival, target innervation and synaptogenesis. Neurotrophin specificity has been attributed to the selective expression of the Trk tyrosine kinase receptors in different neuronal subpopulations. However, despite overlapping expression of TrkB and TrkC in many sensory ganglia, brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) null mutant mice display selective losses in neuronal subpopulations. In the present study we have replaced the coding part of the BDNF gene in mice with that of NT3 (BDNF(NT3/NT3)) to analyse the specificity and selective roles of BDNF and NT3 during development. Analysis of BDNF(NT3/NT3) mice showed striking differences in the ability of NT3 to promote survival, short-range innervation and synaptogenesis in different sensory systems. In the cochlea, specificity is achieved by a tightly controlled spatial and temporal ligand expression. In the vestibular system TrkB or TrkC activation is sufficient to promote vestibular ganglion neuron survival, while TrkB activation is required to promote proper innervation and synaptogenesis. In the gustatory system, NT3 is unable to replace the actions of BDNF possibly because of a temporally selective expression of TrkB in taste neurons. We conclude that there is no general mechanism by which neurotrophin specificity is attained and that specificity is achieved by (i) a tightly controlled spatial and temporal expression of ligands, (ii) different Trk receptors playing distinct roles within the same neuronal subpopulation, or (iii) selective receptor expression in sensory neuron subpopulations.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurônios Aferentes/fisiologia , Neurônios/metabolismo , Neurotrofina 3/metabolismo , Animais , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Cóclea/inervação , Cóclea/metabolismo , Corantes Fluorescentes/metabolismo , Marcação de Genes , Hipocampo/citologia , Hipocampo/metabolismo , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurotrofina 3/genética , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Transdução de Sinais/fisiologia , Papilas Gustativas/citologia , Papilas Gustativas/crescimento & desenvolvimento , Papilas Gustativas/metabolismo , Vestíbulo do Labirinto/citologia , Vestíbulo do Labirinto/crescimento & desenvolvimento , Vestíbulo do Labirinto/inervação , Vestíbulo do Labirinto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA