RESUMO
A primary goal of HIV-1 vaccine development is the consistent elicitation of protective, neutralizing antibodies. While highly similar neutralizing antibodies (nAbs) have been isolated from multiple HIV-infected individuals, it is unclear whether vaccination can consistently elicit highly similar nAbs in genetically diverse primates. Here, we show in three outbred rhesus macaques that immunization with Env elicits a genotypically and phenotypically conserved nAb response. From these vaccinated macaques, we isolated four antibody lineages that had commonalities in immunoglobulin variable, diversity, and joining gene segment usage. Atomic-level structures of the antigen binding fragments of the two most similar antibodies showed nearly identical paratopes. The Env binding modes of each of the four vaccine-induced nAbs were distinct from previously known monoclonal HIV-1 neutralizing antibodies, but were nearly identical to each other. The similarities of these antibodies show that the immune system in outbred primates can respond to HIV-1 Env vaccination with a similar structural and genotypic solution for recognizing a particular neutralizing epitope. These results support rational vaccine design for HIV-1 that aims to reproducibly elicit, in genetically diverse primates, nAbs with specific paratope structures capable of binding conserved epitopes.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Macaca mulattaRESUMO
In HIV-1, the ability to mount antibody responses to conserved, neutralizing epitopes is critical for protection. Here we have studied the light chain usage of human and rhesus macaque antibodies targeted to a dominant region of the HIV-1 envelope second variable (V2) region involving lysine (K) 169, the site of immune pressure in the RV144 vaccine efficacy trial. We found that humans and rhesus macaques used orthologous lambda variable gene segments encoding a glutamic acid-aspartic acid (ED) motif for K169 recognition. Structure determination of an unmutated ancestor antibody demonstrated that the V2 binding site was preconfigured for ED motif-mediated recognition prior to maturation. Thus, light chain usage for recognition of the site of immune pressure in the RV144 trial is highly conserved across species. These data indicate that the HIV-1 K169-recognizing ED motif has persisted over the diversification between rhesus macaques and humans, suggesting an evolutionary advantage of this antibody recognition mode.
Assuntos
Vacinas contra a AIDS , Anticorpos Antivirais/metabolismo , Linfócitos B/imunologia , Epitopos de Linfócito B/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/imunologia , Cadeias Leves de Imunoglobulina/metabolismo , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos/genética , Células Cultivadas , Ensaios Clínicos como Assunto , Sequência Conservada/genética , Mapeamento de Epitopos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , Humanos , Macaca mulatta , Dados de Sequência Molecular , Mutação/genética , Filogenia , Ligação Proteica/genética , Engenharia de ProteínasRESUMO
Zika virus (ZIKV) has recently emerged as a pandemic associated with severe neuropathology in newborns and adults. There are no ZIKV-specific treatments or preventatives. Therefore, the development of a safe and effective vaccine is a high priority. Messenger RNA (mRNA) has emerged as a versatile and highly effective platform to deliver vaccine antigens and therapeutic proteins. Here we demonstrate that a single low-dose intradermal immunization with lipid-nanoparticle-encapsulated nucleoside-modified mRNA (mRNA-LNP) encoding the pre-membrane and envelope glycoproteins of a strain from the ZIKV outbreak in 2013 elicited potent and durable neutralizing antibody responses in mice and non-human primates. Immunization with 30 µg of nucleoside-modified ZIKV mRNA-LNP protected mice against ZIKV challenges at 2 weeks or 5 months after vaccination, and a single dose of 50 µg was sufficient to protect non-human primates against a challenge at 5 weeks after vaccination. These data demonstrate that nucleoside-modified mRNA-LNP elicits rapid and durable protective immunity and therefore represents a new and promising vaccine candidate for the global fight against ZIKV.
Assuntos
RNA Mensageiro/administração & dosagem , RNA Mensageiro/química , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Feminino , Glicoproteínas/genética , Glicoproteínas/imunologia , Injeções Intradérmicas , Macaca mulatta/imunologia , Macaca mulatta/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/química , Estabilidade de RNA , RNA Mensageiro/genética , RNA Viral/administração & dosagem , RNA Viral/química , RNA Viral/genética , Fatores de Tempo , Vacinação , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem , Zika virus/química , Zika virus/genética , Infecção por Zika virus/imunologiaRESUMO
A preventive human immunodeficiency virus type 1 (HIV-1) vaccine is an essential part of the strategy to eradicate AIDS. A critical question is whether antibodies that do not neutralize primary isolate (tier 2) HIV-1 strains can protect from infection. In this study, we investigated the ability of an attenuated poxvirus vector (NYVAC) prime-envelope gp120 boost to elicit potentially protective antibody responses in a rhesus macaque model of mucosal simian-human immunodeficiency virus (SHIV) infection. NYVAC vector delivery of a group M consensus envelope, trivalent mosaic envelopes, or a natural clade B isolate B.1059 envelope elicited antibodies that mediated neutralization of tier 1 viruses, cellular cytotoxicity, and phagocytosis. None of the macaques made neutralizing antibodies against the tier 2 SHIV SF162P3 used for mucosal challenge. Significant protection from infection was not observed for the three groups of vaccinated macaques compared to unvaccinated macaques, although binding antibody to HIV-1 Env correlated with decreased viremia after challenge. Thus, NYVAC Env prime-gp120 boost vaccination elicited polyfunctional, nonneutralizing antibody responses with minimal protective activity against tier 2 SHIV mucosal challenge.IMPORTANCE The antibody responses that confer protection against HIV-1 infection remain unknown. Polyfunctional antibody responses correlated with time to infection in previous macaque studies. Determining the ability of vaccines to induce these types of responses is critical for understanding how to improve upon the one efficacious human HIV-1 vaccine trial completed thus far. We characterized the antibody responses induced by a NYVAC-protein vaccine and determined the protective capacity of polyfunctional antibody responses in an R5, tier 2 mucosal SHIV infection model.
Assuntos
Vacinas contra a AIDS/imunologia , HIV-1/imunologia , Imunização Secundária , Imunogenicidade da Vacina , Vírus da Imunodeficiência Símia/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Humanos , Macaca mulattaRESUMO
In the RV144 gp120 HIV vaccine trial, decreased transmission risk was correlated with Abs that reacted with a linear epitope at a lysine residue at position 169 (K169) in the HIV-1 envelope (Env) V2 region. The K169 V2 response was restricted to Abs bearing Vλ rearrangements that expressed aspartic acid/glutamic acid in CDR L2. The AE.A244 gp120 in AIDSVAX B/E also bound to the unmutated ancestor of a V2-glycan broadly neutralizing Ab, but this Ab type was not induced in the RV144 trial. In this study, we sought to determine whether immunodominance of the V2 linear epitope could be overcome in the absence of human Vλ rearrangements. We immunized IgH- and Igκ-humanized mice with the AE.A244 gp120 Env. In these mice, the V2 Ab response was focused on a linear epitope that did not include K169. V2 Abs were isolated that used the same human VH gene segment as an RV144 V2 Ab but paired with a mouse λ L chain. Structural characterization of one of these V2 Abs revealed how the linear V2 epitope could be engaged, despite the lack of aspartic acid/glutamic acid encoded in the mouse repertoire. Thus, despite the absence of the human Vλ locus in these humanized mice, the dominance of Vλ pairing with human VH for HIV-1 Env V2 recognition resulted in human VH pairing with mouse λ L chains instead of allowing otherwise subdominant V2-glycan broadly neutralizing Abs to develop.
Assuntos
Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/imunologia , Motivos de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Epitopos , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias lambda de Imunoglobulina/imunologia , CamundongosRESUMO
Current human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.
Assuntos
Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Evolução Molecular , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , HIV-1/química , HIV-1/imunologia , Vacinas contra a AIDS/imunologia , África , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Antígenos CD4/química , Antígenos CD4/imunologia , Linhagem da Célula , Células Cultivadas , Células Clonais/citologia , Reações Cruzadas/imunologia , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/genética , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/classificação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Testes de Neutralização , Filogenia , Estrutura Terciária de ProteínaRESUMO
The HIV-1 envelope protein (Env) has evolved to subvert the host immune system, hindering viral control by the host. The tryptophan metabolic enzyme kynureninase (KYNU) is mimicked by a portion of the HIV Env gp41 membrane proximal region (MPER) and is cross-reactive with the HIV broadly neutralizing Ab (bnAb) 2F5. Molecular mimicry of host proteins by pathogens can lead to autoimmune disease. In this article, we demonstrate that neither the 2F5 bnAb nor HIV MPER-KYNU cross-reactive Abs elicited by immunization with an MPER peptide-liposome vaccine in 2F5 bnAb VHDJH and VLJL knock-in mice and rhesus macaques modified KYNU activity or disrupted tissue tryptophan metabolism. Thus, molecular mimicry by HIV-1 Env that promotes the evasion of host anti-HIV-1 Ab responses can be directed toward nonfunctional host protein epitopes that do not impair host protein function. Therefore, the 2F5 HIV Env gp41 region is a key and safe target for HIV-1 vaccine development.
Assuntos
Vacinas contra a AIDS/imunologia , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/imunologia , Hidrolases/metabolismo , Peptídeos/metabolismo , Triptofano/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Reações Cruzadas , Anticorpos Anti-HIV/metabolismo , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/imunologia , Interações Hospedeiro-Patógeno , Humanos , Hidrolases/genética , Hidrolases/imunologia , Evasão da Resposta Imune , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mimetismo Molecular , Peptídeos/genética , Peptídeos/imunologia , Vacinação , Vacinas de Subunidades AntigênicasRESUMO
UNLABELLED: An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE: There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses.
Assuntos
HIV-1/imunologia , Vacinas contra a SAIDS/imunologia , Vacinação/métodos , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Aspartato Aminotransferases , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Sequência Consenso , ELISPOT , Anticorpos Anti-HIV/sangue , HIV-1/genética , Humanos , Interferon gama/metabolismo , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologiaRESUMO
A goal of HIV-1 vaccine development is to elicit broadly neutralizing Abs (BnAbs). Using a knock-in (KI) model of 2F5, a human HIV-1 gp41 membrane proximal external region (MPER)-specific BnAb, we previously demonstrated that a key obstacle to BnAb induction is clonal deletion of BnAb-expressing B cells. In this study of this model, we provide a proof-of-principle that robust serum neutralizing IgG responses can be induced from pre-existing, residual, self-reactive BnAb-expressing B cells in vivo using a structurally compatible gp41 MPER immunogen. Furthermore, in CD40L-deficient 2F5 KI mice, we demonstrate that these BnAb responses are elicited via a type II T-independent pathway, coinciding with expansion and activation of transitional splenic B cells specific for 2F5's nominal gp41 MPER-binding epitope (containing the 2F5 neutralization domain ELDKWA). In contrast, constitutive production of nonneutralizing serum IgGs in 2F5 KI mice is T dependent and originates from a subset of splenic mature B2 cells that have lost their ability to bind 2F5's gp41 MPER epitope. These results suggest that residual, mature B cells expressing autoreactive BnAbs, like 2F5 as BCR, may be limited in their ability to participate in T-dependent responses by purifying selection that selectively eliminates reactivity for neutralization epitope-containing/mimicked host Ags.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Anti-HIV/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes , Ensaio de Imunoadsorção Enzimática , Técnicas de Introdução de Genes , Anticorpos Anti-HIV/sangue , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Humanos , Camundongos , Camundongos Knockout , Testes de NeutralizaçãoRESUMO
Human immunodeficiency virus type 1 (HIV-1) vaccine development requires selection of appropriate envelope (Env) immunogens. Twenty HIV-1 Env glycoproteins were examined for their ability to bind human anti-HIV-1 monoclonal antibodies (MAbs) and then used as immunogens in guinea pigs to identify promising immunogens. These included five Envs derived from chronically infected individuals, each representing one of five common clades and eight consensus Envs based on these five clades, as well as the consensus of the entire HIV-1 M group, and seven transmitted/founder (T/F) Envs from clades B and C. Sera from immunized guinea pigs were tested for neutralizing activity using 36 HIV-1 Env-pseudotyped viruses. All Envs bound to CD4 binding site, membrane-proximal, and V1/V2 MAbs with similar apparent affinities, although the T/F Envs bound with higher affinity to the MAb 17b, a CCR5 coreceptor binding site antibody. However, the various Envs differed in their ability to induce neutralizing antibodies. Consensus Envs elicited the most potent responses, but neutralized only a subset of viruses, including mostly easy-to-neutralize tier 1 and some more-difficult-to-neutralize tier 2 viruses. T/F Envs elicited fewer potent neutralizing antibodies but exhibited greater breadth than chronic or consensus Envs. Finally, chronic Envs elicited the lowest level and most limited breadth of neutralizing antibodies overall. Thus, each group of Env immunogens elicited a different antibody response profile. The complementary benefits of consensus and T/F Env immunogens raise the possibility that vaccines utilizing a combination of consensus and T/F Envs may be able to induce neutralizing responses with greater breadth and potency than single Env immunogens.
Assuntos
Antígenos Virais/imunologia , Glicoproteínas/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Neutralizantes/sangue , Afinidade de Anticorpos , Antígenos Virais/genética , Reações Cruzadas , Glicoproteínas/genética , Cobaias , Anticorpos Anti-HIV/sangue , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Produtos do Gene env do Vírus da Imunodeficiência Humana/genéticaRESUMO
The HIV-1 gp41 envelope (Env) membrane proximal external region (MPER) is an important vaccine target that in rare subjects can elicit neutralizing antibodies. One mechanism proposed for rarity of MPER neutralizing antibody generation is lack of reverted unmutated ancestor (putative naive B cell receptor) antibody reactivity with HIV-1 envelope. We have studied the effect of partial deglycosylation under non-denaturing (native) conditions on gp140 Env antigenicity for MPER neutralizing antibodies and their reverted unmutated ancestor antibodies. We found that native deglycosylation of clade B JRFL gp140 as well as group M consensus gp140 Env CON-S selectively increased the reactivity of Env with the broad neutralizing human mAbs, 2F5 and 4E10. Whereas fully glycosylated gp140 Env either did not bind (JRFL), or weakly bound (CON-S), 2F5 and 4E10 reverted unmutated ancestors, natively deglycosylated JRFL and CON-S gp140 Envs did bind well to these putative mimics of naive B cell receptors. These data predict that partially deglycoslated Env would bind better than fully glycosylated Env to gp41-specific naïve B cells with improved immunogenicity. In this regard, immunization of rhesus macaques demonstrated enhanced immunogenicity of the 2F5 MPER epitope on deglyosylated JRFL gp140 compared to glycosylated JRFL gp140. Thus, the lack of 2F5 and 4E10 reverted unmutated ancestor binding to gp140 Env may not always be due to lack of unmutated ancestor antibody reactivity with gp41 peptide epitopes, but rather, may be due to glycan interference of binding of unmutated ancestor antibodies of broad neutralizing mAb to Env gp41.
Assuntos
Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Epitopos/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Animais , Anticorpos Monoclonais/imunologia , Glicosilação , Proteína gp41 do Envelope de HIV/química , HIV-1/imunologia , Humanos , Macaca mulatta/imunologia , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologiaRESUMO
HIV-1 gp41 envelope antibodies, which are frequently induced in HIV-1-infected individuals, are predominantly nonneutralizing. The rare and difficult-to-induce neutralizing antibodies (2F5 and 4E10) that target gp41 membrane-proximal epitopes (MPER) are polyspecific and require lipid binding for HIV-1 neutralization. These results raise the questions of how prevalent polyreactivity is among gp41 antibodies and how the binding properties of gp41-nonneutralizing antibodies differ from those of antibodies that are broadly neutralizing. In this study, we have characterized a panel of human gp41 antibodies with binding specificities within the immunodominant cluster I (gp41 amino acids [aa] 579 to 613) or cluster II (gp41 aa 644 to 667) for reactivity to autoantigens, to the gp140 protein, and with MPER peptide-lipid conjugates. We report that while none of the gp41 cluster I antibodies studied were polyspecific, all three gp41 cluster II antibodies bound either to lipids or autoantigens, thus showing the propensity of cluster II antibodies to manifest polyreactivity. All cluster II gp41 monoclonal antibodies (MAbs), including those that were lipid reactive, failed to bind to gp41 MPER peptide-lipid complexes. Cluster II antibodies bound strongly with nanomolar binding affinity (dissociation constant [K(d)]) to oligomeric gp140 proteins, and thus, they recognize conformational epitopes on gp41 that are distinct from those of neutralizing gp41 antibodies. These results demonstrate that lipid-reactive gp41 cluster II antibodies are nonneutralizing due to their inability to bind to the relevant neutralizing epitopes on gp41.
Assuntos
Anticorpos Monoclonais/imunologia , Autoantígenos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Fosfolipídeos/imunologia , Humanos , Cinética , Ligação ProteicaRESUMO
OBJECTIVE: We previously generated MRL/lpr mice deficient in activation-induced deaminase (AID) that lack isotype switching and immunoglobulin hypermutation. These mice have high levels of unmutated (germline) autoreactive IgM, yet they experienced an increase in survival and an improvement in lupus nephritis that exceeded that of MRL/lpr mice lacking IgG. The purpose of the present study was to test the hypothesis that high levels of germline autoreactive IgM in these mice confer protection against lupus nephritis. METHODS: Autoreactive IgM antibodies of various specificities, including antibodies against double-stranded DNA (dsDNA), from AID-deficient MRL/lpr mice were given to asymptomatic MRL/lpr mice, and the levels of cytokines, proteinuria, immune complex deposition in the kidneys, and glomerulonephritis were examined. Novel AID-deficient MRL/lpr mice that lack any antibodies were generated for comparison to AID-deficient MRL/lpr mice that secrete only IgM. RESULTS: Treatment with IgM anti-dsDNA resulted in a dramatic improvement in lupus nephritis. Other autoreactive IgM antibodies, such as antiphospholipid and anti-Sm, did not alter the pathologic changes. Secretion of proinflammatory cytokines by macrophages and the levels of inflammatory cells and apoptotic debris in the kidneys were lower in mice receiving IgM anti-dsDNA. Protective IgM derived from AID-deficient MRL/lpr mice displayed a distinct B cell repertoire, with a bias toward members of the V(H) 7183 family. CONCLUSION: IgM anti-dsDNA protected MRL/lpr mice from lupus nephritis, likely by stopping the inflammatory cascade leading to kidney damage. A distinct repertoire of V(H) usage in IgM anti-dsDNA hybridomas from AID-deficient mice suggests that there is enrichment of a dedicated B cell population that secretes unmutated protective IgM in these mice.
Assuntos
Anticorpos/metabolismo , Citidina Desaminase/deficiência , DNA/imunologia , Imunoglobulina M/metabolismo , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Modelos Animais de Doenças , Hibridomas/imunologia , Hibridomas/metabolismo , Imunoglobulina M/farmacologia , Rim/imunologia , Rim/patologia , Lúpus Eritematoso Sistêmico/metabolismo , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Proteinúria/metabolismoRESUMO
The non-classical class Ib molecule human leukocyte antigen E (HLA-E) has limited polymorphism and can bind HLA class Ia leader peptides (VL9). HLA-E-VL9 complexes interact with the natural killer (NK) cell receptors NKG2A-C/CD94 and regulate NK cell-mediated cytotoxicity. Here we report the isolation of 3H4, a murine HLA-E-VL9-specific IgM antibody that enhances killing of HLA-E-VL9-expressing cells by an NKG2A+ NK cell line. Structural analysis reveal that 3H4 acts by preventing CD94/NKG2A docking on HLA-E-VL9. Upon in vitro maturation, an affinity-optimized IgG form of 3H4 showes enhanced NK killing of HLA-E-VL9-expressing cells. HLA-E-VL9-specific IgM antibodies similar in function to 3H4 are also isolated from naïve B cells of cytomegalovirus (CMV)-negative, healthy humans. Thus, HLA-E-VL9-targeting mouse and human antibodies isolated from the naïve B cell antibody pool have the capacity to enhance NK cell cytotoxicity.
Assuntos
Citotoxicidade Imunológica , Antígenos de Histocompatibilidade Classe I , Animais , Antígenos HLA , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoglobulinas/metabolismo , Células Matadoras Naturais , Camundongos , Peptídeos/metabolismo , Sinais Direcionadores de Proteínas , Antígenos HLA-ERESUMO
A successful HIV-1 vaccine will require induction of a polyclonal neutralizing antibody (nAb) response, yet vaccine-mediated induction of such a response in primates remains a challenge. We found that a stabilized HIV-1 CH505 envelope (Env) trimer formulated with a Toll-like receptor 7/8 agonist induced potent HIV-1 polyclonal nAbs that correlated with protection from homologous simian-human immunodeficiency virus (SHIV) infection. The serum dilution that neutralized 50% of virus replication (ID50 titer) required to protect 90% of macaques was 1:364 against the challenge virus grown in primary rhesus CD4+ T cells. Structural analyses of vaccine-induced nAbs demonstrated targeting of the Env CD4 binding site or the N156 glycan and the third variable loop base. Autologous nAb specificities similar to those elicited in macaques by vaccination were isolated from the human living with HIV from which the CH505 Env immunogen was derived. CH505 viral isolates were isolated that mutated the V1 to escape both the infection-induced and vaccine-induced antibodies. These results define the specificities of a vaccine-induced nAb response and the protective titers of HIV-1 vaccine-induced nAbs required to protect nonhuman primates from low-dose mucosal challenge by SHIVs bearing a primary transmitted/founder Env.
Assuntos
Vacinas contra a AIDS , Doenças Transmissíveis , HIV-1 , Vírus da Imunodeficiência Símia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Imunização , Macaca mulatta , VacinaçãoRESUMO
The development of an effective AIDS vaccine remains a challenge. Nucleoside-modified mRNAs formulated in lipid nanoparticles (mRNA-LNP) have proved to be a potent mode of immunization against infectious diseases in preclinical studies, and are being tested for SARS-CoV-2 in humans. A critical question is how mRNA-LNP vaccine immunogenicity compares to that of traditional adjuvanted protein vaccines in primates. Here, we show that mRNA-LNP immunization compared to protein immunization elicits either the same or superior magnitude and breadth of HIV-1 Env-specific polyfunctional antibodies. Immunization with mRNA-LNP encoding Zika premembrane and envelope or HIV-1 Env gp160 induces durable neutralizing antibodies for at least 41 weeks. Doses of mRNA-LNP as low as 5 µg are immunogenic in macaques. Thus, mRNA-LNP can be used to rapidly generate single or multi-component vaccines, such as sequential vaccines needed to protect against HIV-1 infection. Such vaccines would be as or more immunogenic than adjuvanted recombinant protein vaccines in primates.
RESUMO
Rab11 recycling endosomes are involved in immunological synaptic functions, but the roles of Rab11 family-interacting protein 5 (Rab11Fip5), one of the Rab11 effectors, in the immune system remain obscure. Our previous study demonstrated that RAB11FIP5 transcripts are significantly elevated in PBMCs from HIV-1-infected individuals, making broadly HIV-1-neutralizing Abs compared with those without broadly neutralizing Abs; however, the role of Rab11FiP5 in immune functions remains unclear. In this study, a RAB11FIP5 gene knockout (RAB11FIP5 -/-) mouse model was employed to study the role of Rab11Fip5 in immune responses. RAB11FIP5 -/- mice exhibited no perturbation in lymphoid tissue cell subsets, and Rab11Fip5 was not required for serum Ab induction following HIV-1 envelope immunization, Ab transcytosis to mucosal sites, or survival after influenza challenge. However, differences were observed in multiple transcripts, including cytokine genes, in lymphocyte subsets from envelope-immunized RAB11FIP5 -/- versus control mice. These included alterations in several genes in NK cells that mirrored observations in NKs from HIV-infected humans expressing less RAB11FIP5, although Rab11Fip5 was dispensable for NK cell cytolytic activity. Notably, immunized RAB11FIP5 -/- mice had lower IL4 expression in CD4+ T follicular helper cells and showed lower TNF expression in CD8+ T cells. Likewise, TNF-α production by human CD8+ T cells correlated with PBMC RAB11FIP5 expression. These observations in RAB11FIP5 -/- mice suggest a role for Rab11Fip5 in regulating cytokine responses.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por HIV/imunologia , Transcriptoma , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Feminino , Infecções por HIV/fisiopatologia , HIV-1/patogenicidade , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Development of an effective AIDS vaccine remains a challenge. Nucleoside-modified mRNAs formulated in lipid nanoparticles (mRNA-LNP) have proved to be a potent mode of immunization against infectious diseases in preclinical studies, and are being tested for SARS-CoV-2 in humans. A critical question is how mRNA-LNP vaccine immunogenicity compares to that of traditional adjuvanted protein vaccines in primates. Here, we found that mRNA-LNP immunization compared to protein immunization elicited either the same or superior magnitude and breadth of HIV-1 Env-specific polyfunctional antibodies. Immunization with mRNA-LNP encoding Zika premembrane and envelope (prM-E) or HIV-1 Env gp160 induced durable neutralizing antibodies for at least 41 weeks. Doses of mRNA-LNP as low as 5 µg were immunogenic in macaques. Thus, mRNA-LNP can be used to rapidly generate single or multi-component vaccines, such as sequential vaccines needed to protect against HIV-1 infection. Such vaccines would be as or more immunogenic than adjuvanted recombinant protein vaccines in primates.
RESUMO
Eliciting protective titers of HIV-1 broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development, but current vaccine strategies have yet to induce bnAbs in humans. Many bnAbs isolated from HIV-1-infected individuals are encoded by immunoglobulin gene rearrangments with infrequent naive B cell precursors and with unusual genetic features that may be subject to host regulatory control. Here, we administer antibodies targeting immune cell regulatory receptors CTLA-4, PD-1 or OX40 along with HIV envelope (Env) vaccines to rhesus macaques and bnAb immunoglobulin knock-in (KI) mice expressing diverse precursors of CD4 binding site HIV-1 bnAbs. CTLA-4 blockade augments HIV-1 Env antibody responses in macaques, and in a bnAb-precursor mouse model, CTLA-4 blocking or OX40 agonist antibodies increase germinal center B and T follicular helper cells and plasma neutralizing antibodies. Thus, modulation of CTLA-4 or OX40 immune checkpoints during vaccination can promote germinal center activity and enhance HIV-1 Env antibody responses.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Fatores Imunológicos/imunologia , Vacinação/métodos , Vacinas contra a AIDS/administração & dosagem , Animais , Anticorpos Bloqueadores/administração & dosagem , Anticorpos Bloqueadores/imunologia , Anticorpos Neutralizantes/sangue , Linfócitos B/imunologia , Antígenos CD4/genética , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Anticorpos Anti-HIV/sangue , Infecções por HIV/imunologia , Humanos , Fatores Imunológicos/administração & dosagem , Ativação Linfocitária , Macaca mulatta/imunologia , Camundongos , Camundongos Transgênicos , Receptores OX40/agonistas , Receptores OX40/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Transcriptoma , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologiaRESUMO
Two human monoclonal antibodies (MAbs) (2F5 and 4E10) against the human immunodeficiency virus type 1 (HIV-1) envelope g41 cluster II membrane proximal external region (MPER) broadly neutralize HIV-1 primary isolates. However, these antibody specificities are rare, are not induced by Env immunization or HIV-1 infection, and are polyspecific and also react with lipids such as cardiolipin or phosphatidylserine. To probe MPER anti-gp41 antibodies that are produced in HIV-1 infection, we have made two novel murine MAbs, 5A9 and 13H11, against HIV-1 gp41 envelope that partially cross-blocked 2F5 MAb binding to Env but did not neutralize HIV-1 primary isolates or bind host lipids. Competitive inhibition assays using labeled 13H11 MAb and HIV-1-positive patient plasma samples demonstrated that cluster II 13H11-blocking plasma antibodies were made in 83% of chronically HIV-1 infected patients and were acquired between 5 to 10 weeks after acute HIV-1 infection. Both the mouse 13H11 MAb and the three prototypic cluster II human MAbs (98-6, 126-6, and 167-D) blocked 2F5 binding to gp41 epitopes to variable degrees; the combination of 98-6 and 13H11 completely blocked 2F5 binding. These data provide support for the hypothesis that in some patients, B cells make nonneutralizing cluster II antibodies that may mask or otherwise down-modulate B-cell responses to immunogenic regions of gp41 that could be recognized by B cells capable of producing antibodies like 2F5.