Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 158(4): 699-701, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25126778

RESUMO

The manufacturing of clinically relevant cells is a widely used strategy in regenerative medicine. Cahan et al. develop a network biology platform named CellNet to accurately assess the fidelity of such cells and spot aberrant regulatory networks, and Morris et al. apply this platform to improve cell manufacturing.


Assuntos
Engenharia Celular/métodos , Células-Tronco/citologia , Biologia de Sistemas/métodos , Animais , Humanos
2.
Cell ; 141(6): 943-55, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20550931

RESUMO

Reprogramming of somatic cells achieved by combination of the four transcription factors Oct4, Sox2, Klf4, and c-Myc has very low efficiency. To increase the reprogramming efficiency and better understand the process, we sought to identify factors that mediate reprogramming with higher efficiency. We established an assay to screen nuclear fractions from extracts of pluripotent mouse cells based on Oct4 reactivation. Using proteomics, we identified components of the ATP-dependent BAF chromatin-remodeling complex, which significantly increases reprogramming efficiency when used together with the four factors. The reprogrammed cells could transmit to the germline and exhibited pluripotency. Reprogramming remained highly efficient when c-Myc was not present but BAF components were overexpressed. BAF complex components mediate this effect by facilitating enhanced Oct4 binding to target promoters during reprogramming. Thus, somatic cell reprogramming using chromatin-remodeling molecules represents an efficient method of generating reprogrammed cells.


Assuntos
Reprogramação Celular , Montagem e Desmontagem da Cromatina , Animais , Linhagem Celular , Cromatina/metabolismo , DNA Helicases/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Fator 4 Semelhante a Kruppel , Camundongos , Proteínas Nucleares/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo
3.
Cell ; 143(4): 617-27, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21056461

RESUMO

Embryonic stem cells (ESCs) comprise at least two populations of cells with divergent states of pluripotency. Here, we show that epiblast stem cells (EpiSCs) also comprise two distinct cell populations that can be distinguished by the expression of a specific Oct4-GFP marker. These two subpopulations, Oct4-GFP positive and negative EpiSCs, are capable of converting into each other in vitro. Oct4-GFP positive and negative EpiSCs are distinct from ESCs with respect to global gene expression pattern, epigenetic profile, and Oct4 enhancer utilization. Oct4-GFP negative cells share features with cells of the late mouse epiblast and cannot form chimeras. However, Oct4-GFP positive EpiSCs, which only represent a minor EpiSC fraction, resemble cells of the early epiblast and can readily contribute to chimeras. Our findings suggest that the rare ability of EpiSCs to contribute to chimeras is due to the presence of the minor EpiSC fraction representing the early epiblast.


Assuntos
Camadas Germinativas/citologia , Camundongos/embriologia , Células-Tronco/citologia , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/análise , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(43): e2123476119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251998

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), are derived from yolk-sac macrophages that populate the developing CNS during early embryonic development. Once established, the microglia population is self-maintained throughout life by local proliferation. As a scalable source of microglia-like cells (MGLs), we here present a forward programming protocol for their generation from human pluripotent stem cells (hPSCs). The transient overexpression of PU.1 and C/EBPß in hPSCs led to a homogenous population of mature microglia within 16 d. MGLs met microglia characteristics on a morphological, transcriptional, and functional level. MGLs facilitated the investigation of a human tauopathy model in cortical neuron-microglia cocultures, revealing a secondary dystrophic microglia phenotype. Single-cell RNA sequencing of microglia integrated into hPSC-derived cortical brain organoids demonstrated a shift of microglia signatures toward a more-developmental in vivo-like phenotype, inducing intercellular interactions promoting neurogenesis and arborization. Taken together, our microglia forward programming platform represents a tool for both reductionist studies in monocultures and complex coculture systems, including 3D brain organoids for the study of cellular interactions in healthy or diseased environments.


Assuntos
Microglia , Células-Tronco Pluripotentes , Diferenciação Celular/genética , Sistema Nervoso Central , Humanos , Macrófagos , Neurônios
5.
EMBO J ; 39(1): e99165, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31571238

RESUMO

The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor-dependent chromatin opening occurs remains unclear. Using FRAP and ATAC-seq, we found that Oct4 acts as a pioneer factor that loosens heterochromatin and facilitates the binding of Klf4 and the expression of epithelial genes in early reprogramming, leading to enhanced mesenchymal-to-epithelial transition. A mutation in the Oct4 linker, L80A, which shows impaired interaction with the BAF complex component Brg1, is inactive in heterochromatin loosening. Oct4-L80A also blocks the binding of Klf4 and retards MET. Finally, vitamin C or Gadd45a could rescue the reprogramming deficiency of Oct4-L80A by enhancing chromatin opening and Klf4 binding. These studies reveal a cooperation between Oct4 and Klf4 at the chromatin level that facilitates MET at the cellular level and shed light into the research of multiple factors in cell fate determination.


Assuntos
Reprogramação Celular , Células Epiteliais/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição Kruppel-Like/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Células Cultivadas , DNA Helicases/genética , DNA Helicases/metabolismo , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal , Fibroblastos/citologia , Fibroblastos/metabolismo , Heterocromatina/genética , Histonas/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34528691

RESUMO

The germ cell lineage in mammals is induced by the stimulation of pluripotent epiblast cells by signaling molecules. Previous studies have suggested that the germ cell differentiation competence or responsiveness of epiblast cells to signaling molecules is established and maintained in epiblast cells of a specific differentiation state. However, the molecular mechanism underlying this process has not been well defined. Here, using the differentiation model of mouse epiblast stem cells (EpiSCs), we have shown that two defined EpiSC lines have robust germ cell differentiation competence. However, another defined EpiSC line has no competence. By evaluating the molecular basis of EpiSCs with distinct germ cell differentiation competence, we identified YAP, an intracellular mediator of the Hippo signaling pathway, as crucial for the establishment of germ cell induction. Strikingly, deletion of YAP severely affected responsiveness to inductive stimuli, leading to a defect in WNT target activation and germ cell differentiation. In conclusion, we propose that the Hippo/YAP signaling pathway creates a potential for germ cell fate induction via mesodermal WNT signaling in pluripotent epiblast cells.


Assuntos
Células Germinativas/metabolismo , Camadas Germinativas/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Feminino , Via de Sinalização Hippo/fisiologia , Masculino , Camundongos , Células-Tronco/metabolismo , Via de Sinalização Wnt/fisiologia
7.
Cell ; 136(3): 411-9, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19203577

RESUMO

The four transcription factors Oct4, Sox2, Klf4, and c-Myc can induce pluripotency in mouse and human fibroblasts. We previously described direct reprogramming of adult mouse neural stem cells (NSCs) by Oct4 and either Klf4 or c-Myc. NSCs endogenously express Sox2, c-Myc, and Klf4 as well as several intermediate reprogramming markers. Here we report that exogenous expression of the germline-specific transcription factor Oct4 is sufficient to generate pluripotent stem cells from adult mouse NSCs. These one-factor induced pluripotent stem cells (1F iPS) are similar to embryonic stem cells in vitro and in vivo. Not only can these cells can be efficiently differentiated into NSCs, cardiomyocytes, and germ cells in vitro, but they are also capable of teratoma formation and germline transmission in vivo. Our results demonstrate that Oct4 is required and sufficient to directly reprogram NSCs to pluripotency.


Assuntos
Células-Tronco Adultas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Células-Tronco Embrionárias/metabolismo , Células Germinativas/citologia , Fator 4 Semelhante a Kruppel , Antígenos CD15/metabolismo , Camundongos , Miócitos Cardíacos/citologia
8.
Nucleic Acids Res ; 50(18): 10311-10327, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36130732

RESUMO

Pioneer transcription factors are proteins that induce cellular identity transitions by binding to inaccessible regions of DNA in nuclear chromatin. They contribute to chromatin opening and recruit other factors to regulatory DNA elements. The structural features and dynamics modulating their interaction with nucleosomes are still unresolved. From a combination of experiments and molecular simulations, we reveal here how the pioneer factor and master regulator of pluripotency, Oct4, interprets and enhances nucleosome structural flexibility. The magnitude of Oct4's impact on nucleosome dynamics depends on the binding site position and the mobility of the unstructured tails of nucleosomal histone proteins. Oct4 uses both its DNA binding domains to propagate and stabilize open nucleosome conformations, one for specific sequence recognition and the other for nonspecific interactions with nearby regions of DNA. Our findings provide a structural basis for the versatility of transcription factors in engaging with nucleosomes and have implications for understanding how pioneer factors induce chromatin dynamics.


Assuntos
Nucleossomos , Fator 3 de Transcrição de Octâmero/metabolismo , Cromatina/genética , Histonas/metabolismo , Nucleossomos/genética , Fatores de Transcrição/metabolismo
9.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851405

RESUMO

Cadherin-mediated cell adhesion requires anchoring via the ß-catenin-α-catenin complex to the actin cytoskeleton, yet, α-catenin only binds F-actin weakly. A covalent fusion of VE-cadherin to α-catenin enhances actin anchorage in endothelial cells and strongly stabilizes endothelial junctions in vivo, blocking inflammatory responses. Here, we have analyzed the underlying mechanism. We found that VE-cadherin-α-catenin constitutively recruits the actin adaptor vinculin. However, removal of the vinculin-binding region of α-catenin did not impair the ability of VE-cadherin-α-catenin to enhance junction integrity. Searching for an alternative explanation for the junction-stabilizing mechanism, we found that an antibody-defined epitope, normally buried in a short α1-helix of the actin-binding domain (ABD) of α-catenin, is openly displayed in junctional VE-cadherin-α-catenin chimera. We found that this epitope became exposed in normal α-catenin upon triggering thrombin-induced tension across the VE-cadherin complex. These results suggest that the VE-cadherin-α-catenin chimera stabilizes endothelial junctions due to conformational changes in the ABD of α-catenin that support constitutive strong binding to actin.


Assuntos
Caderinas , Células Endoteliais , Citoesqueleto de Actina , Actinas/genética , Caderinas/genética , Junções Intercelulares , Vinculina , alfa Catenina/genética
10.
Blood ; 138(21): 2051-2065, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34370827

RESUMO

Hematopoietic stem and progenitor cell (HSPC) function in bone marrow (BM) is controlled by stroma-derived signals, but the identity and interplay of these signals remain incompletely understood. Here, we show that sympathetic nerve-derived dopamine directly controls HSPC behavior through D2 subfamily dopamine receptors. Blockade of dopamine synthesis, as well as pharmacological or genetic inactivation of D2 subfamily dopamine receptors, leads to reduced HSPC frequency, inhibition of proliferation, and low BM transplantation efficiency. Conversely, treatment with a D2-type receptor agonist increases BM regeneration and transplantation efficiency. Mechanistically, dopamine controls expression of the lymphocyte-specific protein tyrosine kinase (Lck), which, in turn, regulates MAPK-mediated signaling triggered by stem cell factor in HSPCs. Our work reveals critical functional roles of dopamine in HSPCs, which may open up new therapeutic options for improved BM transplantation and other conditions requiring the rapid expansion of HSPCs.


Assuntos
Dopamina/metabolismo , Células-Tronco Hematopoéticas/citologia , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , Animais , Transplante de Medula Óssea , Proliferação de Células , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Camundongos
11.
Nat Chem Biol ; 17(1): 47-56, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32807969

RESUMO

Identifying molecular and cellular processes that regulate reprogramming competence of transcription factors broadens our understanding of reprogramming mechanisms. In the present study, by a chemical screen targeting major epigenetic pathways in human reprogramming, we discovered that inhibiting specific epigenetic roadblocks including disruptor of telomeric silencing 1-like (DOT1L)-mediated H3K79/K27 methylation, but also other epigenetic pathways, catalyzed by lysine-specific histone demethylase 1A, DNA methyltransferases and histone deacetylases, allows induced pluripotent stem cell generation with almost all OCT factors. We found that simultaneous inhibition of these pathways not only dramatically enhances reprogramming competence of most OCT factors, but in fact enables dismantling of species-dependent reprogramming competence of OCT6, NR5A1, NR5A2, TET1 and GATA3. Harnessing these induced permissive epigenetic states, we performed an additional screen with 98 candidate genes. Thereby, we identified 25 transcriptional regulators (OTX2, SIX3, and so on) that can functionally replace OCT4 in inducing pluripotency. Our findings provide a conceptual framework for understanding how transcription factors elicit reprogramming in dependency of the donor cell epigenome that differs across species.


Assuntos
Reprogramação Celular , Epigênese Genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição de Octâmero/genética , Fatores de Transcrição de Octâmero/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Especificidade da Espécie , Transcrição Gênica , Transfecção , Proteína Homeobox SIX3
12.
EMBO Rep ; 22(8): e52553, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34156139

RESUMO

Fine-tuned dissolution of pluripotency is critical for proper cell differentiation. Here we show that the mesodermal transcription factor, T, globally affects the properties of pluripotency through binding to Oct4 and to the loci of other pluripotency regulators. Strikingly, lower T levels coordinately affect naïve pluripotency, thereby directly activating the germ cell differentiation program, in contrast to the induction of germ cell fate of primed models. Contrary to the effect of lower T levels, higher T levels more severely affect the pluripotency state, concomitantly enhancing the somatic differentiation program and repressing the germ cell differentiation program. Consistent with such in vitro findings, nascent germ cells in vivo are detected in the region of lower T levels at the posterior primitive streak. Furthermore, T and core pluripotency regulators co-localize at the loci of multiple germ cell determinants responsible for germ cell development. In conclusion, our findings indicate that residual pluripotency establishes the earliest and fundamental regulatory mechanism for inductive germline segregation from somatic lineages.


Assuntos
Células Germinativas , Mesoderma , Diferenciação Celular , Separação Celular , Fatores de Transcrição
13.
EMBO Rep ; 22(11): e53048, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34515391

RESUMO

During implantation, the murine embryo transitions from a "quiet" into an active metabolic/proliferative state, which kick-starts the growth and morphogenesis of the post-implantation conceptus. Such transition is also required for embryonic stem cells to be established from mouse blastocysts, but the factors regulating this process are poorly understood. Here, we show that Ronin plays a critical role in the process by enabling active energy production, and the loss of Ronin results in the establishment of a reversible quiescent state in which naïve pluripotency is promoted. In addition, Ronin fine-tunes the expression of genes that encode ribosomal proteins and is required for proper tissue-scale organisation of the pluripotent lineage during the transition from blastocyst to egg cylinder stage. Thus, Ronin function is essential for governing the metabolic capacity so that it can support the pluripotent lineage's high-energy demands for cell proliferation and morphogenesis.


Assuntos
Desenvolvimento Embrionário , Células-Tronco Embrionárias , Animais , Blastocisto/metabolismo , Implantação do Embrião/fisiologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/metabolismo , Camundongos
14.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047520

RESUMO

Most cardiomyocytes (CMs) in the adult mammalian heart are either binucleated or contain a single polyploid nucleus. Recent studies have shown that polyploidy in CMs plays an important role as an adaptive response to physiological demands and environmental stress and correlates with poor cardiac regenerative ability after injury. However, knowledge about the functional properties of polyploid CMs is limited. In this study, we generated tetraploid pluripotent stem cells (PSCs) by fusion of murine embryonic stem cells (ESCs) and somatic cells isolated from bone marrow or spleen and performed a comparative analysis of the electrophysiological properties of tetraploid fusion-derived PSCs and diploid ESC-derived CMs. Fusion-derived PSCs exhibited characteristics of genuine ESCs and contained a near-tetraploid genome. Ploidy features and marker expression were also retained during the differentiation of fusion-derived cells. Fusion-derived PSCs gave rise to CMs, which were similar to their diploid ESC counterparts in terms of their expression of typical cardiospecific markers, sarcomeric organization, action potential parameters, response to pharmacologic stimulation with various drugs, and expression of functional ion channels. These results suggest that the state of ploidy does not significantly affect the structural and electrophysiological properties of murine PSC-derived CMs. These results extend our knowledge of the functional properties of polyploid CMs and contribute to a better understanding of their biological role in the adult heart.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Tetraploidia , Diploide , Células-Tronco Embrionárias , Diferenciação Celular/genética , Poliploidia , Mamíferos
15.
Mol Biol Evol ; 38(7): 2854-2868, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33720298

RESUMO

Transcription factor-driven cell fate engineering in pluripotency induction, transdifferentiation, and forward reprogramming requires efficiency, speed, and maturity for widespread adoption and clinical translation. Here, we used Oct4, Sox2, Klf4, and c-Myc driven pluripotency reprogramming to evaluate methods for enhancing and tailoring cell fate transitions, through directed evolution with iterative screening of pooled mutant libraries and phenotypic selection. We identified an artificially evolved and enhanced POU factor (ePOU) that substantially outperforms wild-type Oct4 in terms of reprogramming speed and efficiency. In contrast to Oct4, not only can ePOU induce pluripotency with Sox2 alone, but it can also do so in the absence of Sox2 in a three-factor ePOU/Klf4/c-Myc cocktail. Biochemical assays combined with genome-wide analyses showed that ePOU possesses a new preference to dimerize on palindromic DNA elements. Yet, the moderate capacity of Oct4 to function as a pioneer factor, its preference to bind octamer DNA and its capability to dimerize with Sox2 and Sox17 proteins remain unchanged in ePOU. Compared with Oct4, ePOU is thermodynamically stabilized and persists longer in reprogramming cells. In consequence, ePOU: 1) differentially activates several genes hitherto not implicated in reprogramming, 2) reveals an unappreciated role of thyrotropin-releasing hormone signaling, and 3) binds a distinct class of retrotransposons. Collectively, these features enable ePOU to accelerate the establishment of the pluripotency network. This demonstrates that the phenotypic selection of novel factor variants from mammalian cells with desired properties is key to advancing cell fate conversions with artificially evolved biomolecules.


Assuntos
Técnicas de Reprogramação Celular , Evolução Molecular Direcionada , Fatores do Domínio POU/genética , Animais , Fator 4 Semelhante a Kruppel , Camundongos , Engenharia de Proteínas
16.
Mov Disord ; 36(12): 2745-2762, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34498298

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease and primarily characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta of the midbrain. Despite decades of research and the development of various disease model systems, there is no curative treatment. This could be due to current model systems, including cell culture and animal models, not adequately recapitulating human PD etiology. More complex human disease models, including human midbrain organoids, are maturing technologies that increasingly enable the strategic incorporation of the missing components needed to model PD in vitro. The resulting organoid-based biological complexity provides new opportunities and challenges in data analysis of rich multimodal data sets. Emerging artificial intelligence (AI) capabilities can take advantage of large, broad data sets and even correlate results across disciplines. Current organoid technologies no longer lack the prerequisites for large-scale high-throughput screening (HTS) and can generate complex yet reproducible data suitable for AI-based data mining. We have recently developed a fully scalable and HTS-compatible workflow for the generation, maintenance, and analysis of three-dimensional (3D) microtissues mimicking key characteristics of the human midbrain (called "automated midbrain organoids," AMOs). AMOs build a reproducible, scalable foundation for creating next-generation 3D models of human neural disease that can fuel mechanism-agnostic phenotypic drug discovery in human in vitro PD models and beyond. Here, we explore the opportunities and challenges resulting from the convergence of organoid HTS and AI-driven data analytics and outline potential future avenues toward the discovery of novel mechanisms and drugs in PD research. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Inteligência Artificial , Doenças Neurodegenerativas/metabolismo , Organoides/metabolismo , Doença de Parkinson/tratamento farmacológico , Fluxo de Trabalho
17.
Biophys J ; 118(9): 2280-2296, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32027821

RESUMO

Transcription factor (TF) proteins bind to DNA to regulate gene expression. Normally, accessibility to DNA is required for their function. However, in the nucleus, the DNA is often inaccessible, wrapped around histone proteins in nucleosomes forming the chromatin. Pioneer TFs are thought to induce chromatin opening by recognizing their DNA binding sites on nucleosomes. For example, Oct4, a master regulator and inducer of stem cell pluripotency, binds to DNA in nucleosomes in a sequence-specific manner. Here, we reveal the structural dynamics of nucleosomes that mediate Oct4 binding from molecular dynamics simulations. Nucleosome flexibility and the amplitude of nucleosome motions such as breathing and twisting are enhanced in nucleosomes with multiple TF binding sites. Moreover, the regions around the binding sites display higher local structural flexibility. Probing different structures of Oct4-nucleosome complexes, we show that alternative configurations in which Oct4 recognizes partial binding sites display stable TF-DNA interactions similar to those observed in complexes with free DNA and compatible with the DNA curvature and DNA-histone interactions. Therefore, we propose a structural basis for nucleosome recognition by a pioneer TF that is essential for understanding how chromatin is unraveled during cell fate conversions.


Assuntos
DNA , Nucleossomos , Sítios de Ligação , Cromatina , Histonas/metabolismo
18.
Acta Neuropathol ; 140(5): 715-736, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32894330

RESUMO

Multiple sclerosis (MS) is the most frequent demyelinating disease in young adults and despite significant advances in immunotherapy, disease progression still cannot be prevented. Promotion of remyelination, an endogenous repair mechanism resulting in the formation of new myelin sheaths around demyelinated axons, represents a promising new treatment approach. However, remyelination frequently fails in MS lesions, which can in part be attributed to impaired differentiation of oligodendroglial progenitor cells into mature, myelinating oligodendrocytes. The reasons for impaired oligodendroglial differentiation and defective remyelination in MS are currently unknown. To determine whether intrinsic oligodendroglial factors contribute to impaired remyelination in relapsing-remitting MS (RRMS), we compared induced pluripotent stem cell-derived oligodendrocytes (hiOL) from RRMS patients and controls, among them two monozygous twin pairs discordant for MS. We found that hiOL from RRMS patients and controls were virtually indistinguishable with respect to remyelination-associated functions and proteomic composition. However, while analyzing the effect of extrinsic factors we discovered that supernatants of activated peripheral blood mononuclear cells (PBMCs) significantly inhibit oligodendroglial differentiation. In particular, we identified CD4+ T cells as mediators of impaired oligodendroglial differentiation; at least partly due to interferon-gamma secretion. Additionally, we observed that blocked oligodendroglial differentiation induced by PBMC supernatants could not be restored by application of oligodendroglial differentiation promoting drugs, whereas treatment of PBMCs with the immunomodulatory drug teriflunomide prior to supernatant collection partly rescued oligodendroglial differentiation. In summary, these data indicate that the oligodendroglial differentiation block is not due to intrinsic oligodendroglial factors but rather caused by the inflammatory environment in RRMS lesions which underlines the need for drug screening approaches taking the inflammatory environment into account. Combined, these findings may contribute to the development of new remyelination promoting strategies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Oligodendroglia/patologia , Remielinização/imunologia , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas , Interferon gama/imunologia , Células Precursoras de Oligodendrócitos/patologia
19.
Stem Cells ; 37(8): 1018-1029, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31021473

RESUMO

The transcription factor Oct4 plays a key regulatory role in the induction and maintenance of cellular pluripotency. In this article, we show that ubiquitous and multifunctional poly(C) DNA/RNA-binding protein hnRNP-K occupies Oct4 (Pou5f1) enhancers in embryonic stem cells (ESCs) but is dispensable for the initiation, maintenance, and downregulation of Oct4 gene expression. Nevertheless, hnRNP-K has an essential cell-autonomous function in ESCs to maintain their proliferation and viability. To better understand mechanisms of hnRNP-K action in ESCs, we have performed ChIP-seq analysis of genome-wide binding of hnRNP-K and identified several thousands of hnRNP-K target sites that are frequently co-occupied by pluripotency-related and common factors (Oct4, TATA-box binding protein, Sox2, Nanog, Otx2, etc.), as well as active histone marks. Furthermore, hnRNP-K localizes exclusively within open chromatin, implying its role in the onset and/or maintenance of this chromatin state. Stem Cells 2019;37:1018-1029.


Assuntos
Proliferação de Células , Cromatina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Cromatina/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Camundongos , Fatores de Transcrição/genética
20.
Nat Rev Genet ; 15(9): 625-39, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25069490

RESUMO

Tractable and accurate disease models are essential for understanding disease pathogenesis and for developing new therapeutics. As stem cells are capable of self-renewal and differentiation, they are ideally suited both for generating these models and for obtaining the large quantities of cells required for drug development and transplantation therapies. Although proof of principle for the use of adult stem cells and embryonic stem cells in disease modelling has been established, induced pluripotent stem cells (iPSCs) have demonstrated the greatest utility for modelling human diseases. Furthermore, combining gene editing with iPSCs enables the generation of models of genetically complex disorders.


Assuntos
Doença/genética , Genoma Humano/genética , Células-Tronco Pluripotentes Induzidas/patologia , Diferenciação Celular , Humanos , Mutação , Edição de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA