Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(22): 10126-10131, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955345

RESUMO

Magnetism in reduced dimensionalities is of great fundamental interest while also providing perspectives for applications of materials with novel functionalities. In particular, spin dynamics in two dimensions (2D) have become a focus of recent research. Here, we report the observation of coherent propagating spin-wave dynamics in a ∼30 nm thick flake of 2D van der Waals ferromagnet Fe5GeTe2 using X-ray microscopy. Both phase and amplitude information were obtained by direct imaging below TC for frequencies from 2.77 to 3.84 GHz, and the corresponding spin-wave wavelengths were measured to be between 1.5 and 0.5 µm. Thus, parts of the magnonic dispersion relation were determined despite a relatively high magnetic damping of the material. Numerically solving an analytic multilayer model allowed us to corroborate the experimental dispersion relation and predict the influence of changes in the saturation magnetization or interlayer coupling, which could be exploited in future applications by temperature control or stacking of 2D-heterostructures.

2.
Phys Rev Lett ; 131(3): 036201, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37540862

RESUMO

Magnetic multilayers with a separating insulating layer are used in a multitude of functional devices. Controlling the magnetic properties of such devices with an electric field has the potential to vastly enhance their performance. Nevertheless, experimental methods to study the origin of electric-field-induced effects on buried interfaces remain elusive. By using element selective x-ray resonant magnetic reflectometry we are able to gain access to changes in the electronic structure of interfacial atoms caused by an electric field. With this method it is possible to probe interfacial states at the Fermi energy. In a multilayer stack with a Ni/SiO_{2} interface, we find that the electric field slightly shifts the Ni L_{3}-edge in energy, which indicates a change of the oxidation state of interfacial Ni atoms. Further analysis of the strength of the effect reveals that only about 30% of the electrons moved by the electric field end up in interfacial Ni states.

3.
Nano Lett ; 22(23): 9236-9243, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36400013

RESUMO

Skyrmions have been well studied in chiral magnets and magnetic thin films due to their potential application in practical devices. Recently, monochiral skyrmions have been observed in two-dimensional van der Waals magnets. Their atomically flat surfaces and capability to be stacked into heterostructures offer new prospects for skyrmion applications. However, the controlled local nucleation of skyrmions within these materials has yet to be realized. Here, we utilize real-space X-ray microscopy to investigate a heterostructure composed of the 2D ferromagnet Fe3GeTe2 (FGT), an insulating hexagonal boron nitride layer, and a graphite top electrode. Upon a stepwise increase of the voltage applied between the graphite and FGT, a vertically conducting pathway can be formed. This nanocontact allows the tunable creation of individual skyrmions via single nanosecond pulses of low current density. Furthermore, time-resolved magnetic imaging highlights the stability of the nanocontact, while our micromagnetic simulations reproduce the observed skyrmion nucleation process.

4.
Phys Rev Lett ; 126(5): 057201, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605763

RESUMO

The concept of space-time crystals (STC), i.e., translational symmetry breaking in time and space, was recently proposed and experimentally demonstrated for quantum systems. Here, we transfer this concept to magnons and experimentally demonstrate a driven STC at room temperature. The STC is realized by strong homogeneous microwave pumping of a micron-sized permalloy (Py) stripe and is directly imaged by scanning transmission x-ray microscopy (STXM). For a fundamental understanding of the formation of the STC, micromagnetic simulations are carefully adapted to model the experimental findings. Beyond the mere generation of a STC, we observe the formation of a magnonic band structure due to back folding of modes at the STC's Brillouin zone boundaries. We show interactions of magnons with the STC that appear as lattice scattering, which results in the generation of ultrashort spin waves (SW) down to 100-nm wavelengths that cannot be described by classical dispersion relations for linear SW excitation. We expect that room-temperature STCs will be useful to investigate nonlinear wave physics, as they can be easily generated and manipulated to control their spatial and temporal band structures.

5.
Phys Rev Lett ; 127(21): 217201, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860082

RESUMO

A three-dimensional singular point that consists of two oppositely aligned emergent monopoles is identified in continuous CoTb thin films, as confirmed by complementary techniques of resonant elastic x-ray scattering, Lorentz transmission electron microscopy, and scanning transmission x-ray microscopy. This new type of topological defect can be regarded as a superposition of an emergent magnetic monopole and an antimonopole, around which the source and drain of the magnetic flux overlap in space. We experimentally prove that the observed spin twist seen in Lorentz transmission electron microscopy reveals the cross section of the superimposed three-dimensional structure, providing a straightforward strategy for the observation of magnetic singularities. Such a quasiparticle provides an excellent platform for studying the rich physics of emergent electromagnetism.

6.
Nano Lett ; 20(10): 7281-7286, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32830984

RESUMO

On-chip signal processing at microwave frequencies is key for modern mobile communication. When one aims at small footprints, low power consumption, reprogrammable filters, and delay lines, magnons in low-damping ferrimagnets offer great promise. Ferromagnetic grating couplers have been reported to be specifically useful as microwave-to-magnon transducers. However, their interconversion efficiency is unknown and real-space measurements of the emitted magnon wavelengths have not yet been accomplished. Here, we image with subwavelength spatial resolution the magnon emission process into ferrimagnetic yttrium iron garnet (YIG) at frequencies up to 8 GHz. We evidence propagating magnons of a wavelength of 98.7 nm underneath the gratings, which enter the YIG without a phase jump. Counterintuitively, the magnons exhibit an even increased amplitude in YIG, which is unexpected and due to a further wavelength conversion process. Our results are of key importance for magnonic components, which efficiently control microwave signals on the nanoscale.

7.
Small ; 15(34): e1902353, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31257719

RESUMO

The discovery of the high maximum energy product of 59 MGOe for NdFeB magnets is a breakthrough in the development of permanent magnets with a tremendous impact in many fields of technology. This value is still the world record, for 40 years. This work reports on a reliable and robust route to realize nearly perfectly ordered L10 -phase FePt nanoparticles, leading to an unprecedented energy product of 80 MGOe at room temperature. Furthermore, with a 3 nm Au coverage, the magnetic polarization of these nanomagnets can be enhanced by 25% exceeding 1.8 T. This exceptional magnetization and anisotropy is confirmed by using multiple imaging and spectroscopic methods, which reveal highly consistent results. Due to the unprecedented huge energy product, this material can be envisaged as a new advanced basic magnetic component in modern micro and nanosized devices.

8.
Chemphyschem ; 20(10): 1311-1315, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31017710

RESUMO

Quantum sieving of hydrogen isotopes is experimentally studied in isostructural hexagonal metal-organic frameworks having 1-D channels, named IFP-1, -3, -4 and -7. Inside the channels, different molecules or atoms restrict the channel diameter periodically with apertures larger (4.2 Šfor IFP-1, 3.1 Šfor IFP-3) and smaller (2.1 Šfor IFP-7, 1.7 Šfor IFP-4) than the kinetic diameter of hydrogen isotopes. From a geometrical point of view, no gas should penetrate into IFP-7 and IFP-4, but due to the thermally induced flexibility, so-called gate-opening effect of the apertures, penetration becomes possible with increasing temperature. Thermal desorption spectroscopy (TDS) measurements with pure H2 or D2 have been applied to study isotope adsorption. Further TDS experiments after exposure to an equimolar H2 /D2 mixture allow to determine directly the selectivity of isotope separation by quantum sieving. IFP-7 shows a very low selectivity not higher than S=2. The selectivity of the materials with the smallest pore aperture IFP-4 has a constant value of S≈2 for different exposure times and pressures, which can be explained by the 1-D channel structure. Due to the relatively small cavities between the apertures of IFP-4 and IFP-7, molecules in the channels cannot pass each other, which leads to a single-file filling. Therefore, no time dependence is observed, since the quantum sieving effect occurs only at the outermost pore aperture, resulting in a low separation selectivity.

9.
Inorg Chem ; 58(14): 8895-8899, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31184874

RESUMO

Most well-known metal-organic frameworks (MOFs) possessing the magnetic Ni2O2(CO2)2 chains, called Ni-MOF-74, have been investigated with regard to magnetic properties at open-metal sites. We present the modulation of their magnetic phase and metamagnetism via imidazole molecule coordination.

10.
Nano Lett ; 18(7): 4584-4589, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29927600

RESUMO

Janus monolayers have long been captivated as a popular notion for breaking in-plane and out-of-plane structural symmetry. Originated from chemistry and materials science, the concept of Janus functions have been recently extended to ultrathin metasurfaces by arranging meta-atoms asymmetrically with respect to the propagation or polarization direction of the incident light. However, such metasurfaces are intrinsically static and the information they carry can be straightforwardly decrypted by scanning the incident light directions and polarization states once the devices are fabricated. In this Letter, we present a dynamic Janus metasurface scheme in the visible spectral region. In each super unit cell, three plasmonic pixels are categorized into two sets. One set contains a magnesium nanorod and a gold nanorod that are orthogonally oriented with respect to each other, working as counter pixels. The other set only contains a magnesium nanorod. The effective pixels on the Janus metasurface can be reversibly regulated by hydrogenation/dehydrogenation of the magnesium nanorods. Such dynamic controllability at visible frequencies allows for flat optical elements with novel functionalities including beam steering, bifocal lensing, holographic encryption, and dual optical function switching.

11.
Phys Rev Lett ; 120(21): 217204, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883139

RESUMO

Magnetic droplets are nontopological dynamical solitons that can be nucleated in nanocontact based spin torque nano-oscillators (STNOs) with perpendicular magnetic anisotropy free layers. While theory predicts that the droplet should be of the same size as the nanocontact, its inherent drift instability has thwarted attempts at observing it directly using microscopy techniques. Here, we demonstrate highly stable magnetic droplets in all-perpendicular STNOs and present the first detailed droplet images using scanning transmission X-ray microscopy. In contrast to theoretical predictions, we find that the droplet diameter is about twice as large as the nanocontact. By extending the original droplet theory to properly account for the lateral current spread underneath the nanocontact, we show that the large discrepancy primarily arises from current-in-plane Zhang-Li torque adding an outward pressure on the droplet perimeter. Electrical measurements on droplets nucleated using a reversed current in the antiparallel state corroborate this picture.

12.
Phys Rev Lett ; 117(3): 037208, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27472138

RESUMO

Three-dimensional linear spin-wave eigenmodes of a vortex-state Permalloy disk are studied by micromagnetic simulations based on the Landau-Lifshitz-Gilbert equation. The simulations confirm that the increase of the disk thickness leads to the appearance of additional exchange-dominated so-called gyrotropic flexure modes having nodes along the disk thickness, and eigenfrequencies that decrease when the thickness is increased. We observe the formation of a gap in the mode spectrum caused by the hybridization of the first flexure mode with one of the azimuthal spin-wave modes of the disk. A qualitative change of the transverse profile of this azimuthal mode is found, demonstrating that in a thick vortex-state disk the influence of the "transverse" and the "azimuthal" coordinates cannot be separated. The three-dimensional character of the eigenmodes is essential to explain the recently observed asymmetries in an experimentally obtained phase diagram of vortex-core reversal in relatively thick Permalloy disks.

13.
Phys Rev Lett ; 117(27): 277203, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28084754

RESUMO

We present a combined theoretical and experimental study, investigating the origin of the enhanced nonadiabaticity of magnetic vortex cores. Scanning transmission x-ray microscopy is used to image the vortex core gyration dynamically to measure the nonadiabaticity with high precision, including a high confidence upper bound. We show theoretically, that the large nonadiabaticity parameter observed experimentally can be explained by the presence of local spin currents arising from a texture induced emergent Hall effect. This study demonstrates that the magnetic damping α and nonadiabaticity parameter ß are very sensitive to the topology of the magnetic textures, resulting in an enhanced ratio (ß/α>1) in magnetic vortex cores or Skyrmions.

14.
Nanotechnology ; 26(22): 225203, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25969389

RESUMO

Investigations of geometric frustrations in magnetic antidot lattices have led to the observation of interesting phenomena like spin-ice and magnetic monopoles. By using highly focused magneto-optical Kerr effect measurements and x-ray microscopy with magnetic contrast we deduce that geometrical frustration in these nanostructured thin film systems also leads to an out-of-plane magnetization from a purely in-plane applied magnetic field. For certain orientations of the antidot lattice, formation of perpendicular magnetic domains has been found with a size of several µm that may be used for an in-plane/out-of-plane transducer.

15.
Opt Express ; 22(15): 18440-53, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089463

RESUMO

X-ray microscopy is a successful technique with applications in several key fields. Fresnel zone plates (FZPs) have been the optical elements driving its success, especially in the soft X-ray range. However, focusing of hard X-rays via FZPs remains a challenge. It is demonstrated here, that two multilayer type FZPs, delivered from the same multilayer deposit, focus both hard and soft X-rays with high fidelity. The results prove that these lenses can achieve at least 21 nm half-pitch resolution at 1.2 keV demonstrated by direct imaging, and sub-30 nm FWHM (full-pitch) resolution at 7.9 keV, deduced from autocorrelation analysis. Reported FZPs had more than 10% diffraction efficiency near 1.5 keV.

16.
ACS Nano ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38314709

RESUMO

Nonreciprocal wave propagation arises in systems with broken time-reversal symmetry and is key to the functionality of devices, such as isolators or circulators, in microwave, photonic, and acoustic applications. In magnetic systems, collective wave excitations known as magnon quasiparticles have so far yielded moderate nonreciprocities, mainly observed by means of incoherent thermal magnon spectra, while their occurrence as coherent spin waves (magnon ensembles with identical phase) is yet to be demonstrated. Here, we report the direct observation of strongly nonreciprocal propagating coherent spin waves in a patterned element of a ferromagnetic bilayer stack with antiparallel magnetic orientations. We use time-resolved scanning transmission X-ray microscopy (TR-STXM) to directly image the layer-collective dynamics of spin waves with wavelengths ranging from 5 µm down to 100 nm emergent at frequencies between 500 MHz and 5 GHz. The experimentally observed nonreciprocity factor of these counter-propagating waves is greater than 10 with respect to both group velocities and specific wavelengths. Our experimental findings are supported by the results from an analytic theory, and their peculiarities are further discussed in terms of caustic spin-wave focusing.

17.
ACS Nano ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975730

RESUMO

The realization of above room-temperature ferromagnetism in the two-dimensional (2D) magnet Fe5GeTe2 represents a major advance for the use of van der Waals (vdW) materials in practical spintronic applications. In particular, observations of magnetic skyrmions and related states within exfoliated flakes of this material provide a pathway to the fine-tuning of topological spin textures via 2D material heterostructure engineering. However, there are conflicting reports as to the nature of the magnetic structures in Fe5GeTe2. The matter is further complicated by the study of two types of Fe5GeTe2 crystals with markedly different structural and magnetic properties, distinguished by their specific fabrication procedure: whether they are slowly cooled or rapidly quenched from the growth temperature. In this work, we combine X-ray and electron microscopy to observe the formation of magnetic stripe domains, skyrmion-like type-I, and topologically trivial type-II bubbles, within exfoliated flakes of Fe5GeTe2. The results reveal the influence of the magnetic ordering of the Fe1 sublattice below 150 K, which dramatically alters the magnetocrystalline anisotropy and leads to a complex magnetic phase diagram and a sudden change of the stability of the magnetic textures. In addition, we highlight the significant differences in the magnetic structures intrinsic to slow-cooled and quenched Fe5GeTe2 flakes.

18.
J Synchrotron Radiat ; 20(Pt 3): 433-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23592622

RESUMO

Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.


Assuntos
Lentes , Intensificação de Imagem Radiográfica/instrumentação , Radiografia/instrumentação , Difração de Raios X/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Íons Pesados , Espalhamento de Radiação , Raios X
19.
Opt Express ; 21(10): 11747-56, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23736396

RESUMO

Fresnel Zone Plates (FZP) are to date very successful focusing optics for X-rays. Established methods of fabrication are rather complex and based on electron beam lithography (EBL). Here, we show that ion beam lithography (IBL) may advantageously simplify their preparation. A FZP operable from the extreme UV to the limit of the hard X-ray was prepared and tested from 450 eV to 1500 eV. The trapezoidal profile of the FZP favorably activates its 2nd order focus. The FZP with an outermost zone width of 100 nm allows the visualization of features down to 61, 31 and 21 nm in the 1st, 2nd and 3rd order focus respectively. Measured efficiencies in the 1st and 2nd order of diffraction reach the theoretical predictions.


Assuntos
Íons Pesados , Microscopia/instrumentação , Fotografação/instrumentação , Refratometria/instrumentação , Difração de Raios X/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
20.
Nanotechnology ; 24(46): 465709, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24172909

RESUMO

We study the reversal mechanisms in a self-assembled, hexagonally ordered Fe antidot array with a period of 200 nm and an antidot diameter of 100 nm which was prepared by polystyrene nanosphere lithography. Direction-dependent information in such a self-assembled sample is obtained by measuring the anisotropic magnetoresistance (AMR) through constrictions processed by focused ion beam milling in nearest neighbor and next nearest neighbor directions. We show that such an originally integral method can be used to investigate the strong in-plane anisotropy introduced by the antidot lattice. The easy and hard axis reversal mechanisms and corresponding AMR signals are modeled by micromagnetic simulations. Additional in-field magnetic force microscopy studies allow the correlation of microscopic switching to features in the integral AMR. We find that the easy axis of magnetization is connected to a distinct periodic magnetic domain pattern, which can be observed during the whole magnetization reversal. While this process is driven by nucleation and propagation of reversed domains, the hard axis reversal is characterized by a (stepwise) rotation of the magnetization via the antidot lattice' easy axes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA