Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 17(9): e1009725, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34492001

RESUMO

Large-scale mutant libraries have been indispensable for genetic studies, and the development of next-generation genome sequencing technologies has greatly advanced efforts to analyze mutants. In this work, we sequenced the genomes of 660 Chlamydomonas reinhardtii acetate-requiring mutants, part of a larger photosynthesis mutant collection previously generated by insertional mutagenesis with a linearized plasmid. We identified 554 insertion events from 509 mutants by mapping the plasmid insertion sites through paired-end sequences, in which one end aligned to the plasmid and the other to a chromosomal location. Nearly all (96%) of the events were associated with deletions, duplications, or more complex rearrangements of genomic DNA at the sites of plasmid insertion, and together with deletions that were unassociated with a plasmid insertion, 1470 genes were identified to be affected. Functional annotations of these genes were enriched in those related to photosynthesis, signaling, and tetrapyrrole synthesis as would be expected from a library enriched for photosynthesis mutants. Systematic manual analysis of the disrupted genes for each mutant generated a list of 253 higher-confidence candidate photosynthesis genes, and we experimentally validated two genes that are essential for photoautotrophic growth, CrLPA3 and CrPSBP4. The inventory of candidate genes includes 53 genes from a phylogenomically defined set of conserved genes in green algae and plants. Altogether, 70 candidate genes encode proteins with previously characterized functions in photosynthesis in Chlamydomonas, land plants, and/or cyanobacteria; 14 genes encode proteins previously shown to have functions unrelated to photosynthesis. Among the remaining 169 uncharacterized genes, 38 genes encode proteins without any functional annotation, signifying that our results connect a function related to photosynthesis to these previously unknown proteins. This mutant library, with genome sequences that reveal the molecular extent of the chromosomal lesions and resulting higher-confidence candidate genes, will aid in advancing gene discovery and protein functional analysis in photosynthesis.


Assuntos
Acetatos/metabolismo , Chlamydomonas reinhardtii/genética , Sequenciamento do Exoma , Mutação , Fotossíntese/genética , Chlamydomonas reinhardtii/metabolismo , Deleção de Genes , Duplicação Gênica
2.
Plant Cell ; 29(6): 1218-1231, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28576844

RESUMO

The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations.


Assuntos
Genoma de Planta/genética , Genômica/métodos , Oryza/genética , DNA de Plantas/genética , Mutação/genética , Análise de Sequência de DNA
3.
BMC Biol ; 17(1): 88, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711484

RESUMO

BACKGROUND: Aspergillus spp. comprises a very diverse group of lower eukaryotes with a high relevance for industrial applications and clinical implications. These multinucleate species are often cultured for many generations in the laboratory, which can unknowingly propagate hidden genetic mutations. To assess the likelihood of such events, we studied the genome stability of aspergilli by using a combination of mutation accumulation (MA) lines and whole genome sequencing. RESULTS: We sequenced the whole genomes of 30 asexual and 10 sexual MA lines of three Aspergillus species (A. flavus, A. fumigatus and A. nidulans) and estimated that each MA line accumulated mutations for over 4000 mitoses during asexual cycles. We estimated mutation rates of 4.2 × 10-11 (A. flavus), 1.1 × 10-11 (A. fumigatus) and 4.1 × 10-11 (A. nidulans) per site per mitosis, suggesting that the genomes are very robust. Unexpectedly, we found a very high rate of GC → TA transversions only in A. flavus. In parallel, 30 asexual lines of the non-homologous end-joining (NHEJ) mutants of the three species were also allowed to accumulate mutations for the same number of mitoses. Sequencing of these NHEJ MA lines gave an estimated mutation rate of 5.1 × 10-11 (A. flavus), 2.2 × 10-11 (A. fumigatus) and 4.5 × 10-11 (A. nidulans) per base per mitosis, which is slightly higher than in the wild-type strains and some ~ 5-6 times lower than in the yeasts. Additionally, in A. nidulans, we found a NHEJ-dependent interference of the sexual cycle that is independent of the accumulation of mutations. CONCLUSIONS: We present for the first time direct counts of the mutation rate of filamentous fungal species and find that Aspergillus genomes are very robust. Deletion of the NHEJ machinery results in a slight increase in the mutation rate, but at a rate we suggest is still safe to use for biotechnology purposes. Unexpectedly, we found GC→TA transversions predominated only in the species A. flavus, which could be generated by the hepatocarcinogen secondary metabolite aflatoxin. Lastly, a strong effect of the NHEJ mutation in self-crossing was observed and an increase in the mutations of the asexual lines was quantified.


Assuntos
Aspergillus flavus/genética , Genoma Fúngico , Mutação , Mapeamento Cromossômico
4.
J Bacteriol ; 201(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30692176

RESUMO

In previous work (D. R. Harris et al., J Bacteriol 191:5240-5252, 2009, https://doi.org/10.1128/JB.00502-09; B. T. Byrne et al., Elife 3:e01322, 2014, https://doi.org/10.7554/eLife.01322), we demonstrated that Escherichia coli could acquire substantial levels of resistance to ionizing radiation (IR) via directed evolution. Major phenotypic contributions involved adaptation of organic systems for DNA repair. We have now undertaken an extended effort to generate E. coli populations that are as resistant to IR as Deinococcus radiodurans After an initial 50 cycles of selection using high-energy electron beam IR, four replicate populations exhibit major increases in IR resistance but have not yet reached IR resistance equivalent to D. radiodurans Regular deep sequencing reveals complex evolutionary patterns with abundant clonal interference. Prominent IR resistance mechanisms involve novel adaptations to DNA repair systems and alterations in RNA polymerase. Adaptation is highly specialized to resist IR exposure, since isolates from the evolved populations exhibit highly variable patterns of resistance to other forms of DNA damage. Sequenced isolates from the populations possess between 184 and 280 mutations. IR resistance in one isolate, IR9-50-1, is derived largely from four novel mutations affecting DNA and RNA metabolism: RecD A90E, RecN K429Q, and RpoB S72N/RpoC K1172I. Additional mechanisms of IR resistance are evident.IMPORTANCE Some bacterial species exhibit astonishing resistance to ionizing radiation, with Deinococcus radiodurans being the archetype. As natural IR sources rarely exceed mGy levels, the capacity of Deinococcus to survive 5,000 Gy has been attributed to desiccation resistance. To understand the molecular basis of true extreme IR resistance, we are using experimental evolution to generate strains of Escherichia coli with IR resistance levels comparable to Deinococcus Experimental evolution has previously generated moderate radioresistance for multiple bacterial species. However, these efforts could not take advantage of modern genomic sequencing technologies. In this report, we examine four replicate bacterial populations after 50 selection cycles. Genomic sequencing allows us to follow the genesis of mutations in populations throughout selection. Novel mutations affecting genes encoding DNA repair proteins and RNA polymerase enhance radioresistance. However, more contributors are apparent.


Assuntos
Evolução Biológica , Escherichia coli/genética , Escherichia coli/efeitos da radiação , Tolerância a Radiação , Radiação Ionizante , Seleção Genética , Análise Mutacional de DNA , Enzimas Reparadoras do DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Deinococcus/crescimento & desenvolvimento , Deinococcus/efeitos da radiação , Escherichia coli/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Mutação
5.
BMC Genomics ; 20(1): 905, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775618

RESUMO

BACKGROUND: The availability of thousands of complete rice genome sequences from diverse varieties and accessions has laid the foundation for in-depth exploration of the rice genome. One drawback to these collections is that most of these rice varieties have long life cycles, and/or low transformation efficiencies, which limits their usefulness as model organisms for functional genomics studies. In contrast, the rice variety Kitaake has a rapid life cycle (9 weeks seed to seed) and is easy to transform and propagate. For these reasons, Kitaake has emerged as a model for studies of diverse monocotyledonous species. RESULTS: Here, we report the de novo genome sequencing and analysis of Oryza sativa ssp. japonica variety KitaakeX, a Kitaake plant carrying the rice XA21 immune receptor. Our KitaakeX sequence assembly contains 377.6 Mb, consisting of 33 scaffolds (476 contigs) with a contig N50 of 1.4 Mb. Complementing the assembly are detailed gene annotations of 35,594 protein coding genes. We identified 331,335 genomic variations between KitaakeX and Nipponbare (ssp. japonica), and 2,785,991 variations between KitaakeX and Zhenshan97 (ssp. indica). We also compared Kitaake resequencing reads to the KitaakeX assembly and identified 219 small variations. The high-quality genome of the model rice plant KitaakeX will accelerate rice functional genomics. CONCLUSIONS: The high quality, de novo assembly of the KitaakeX genome will serve as a useful reference genome for rice and will accelerate functional genomics studies of rice and other species.


Assuntos
Genoma de Planta , Genômica , Oryza/genética , Sequenciamento Completo do Genoma , Biologia Computacional/métodos , Variação Genética , Genômica/métodos , Anotação de Sequência Molecular , Oryza/classificação , Fenótipo
6.
Appl Environ Microbiol ; 82(3): 857-67, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26590281

RESUMO

Extremely thermoacidophilic Crenarchaeota belonging to the order Sulfolobales flourish in hot acidic habitats that are strongly oxidizing. The pH extremes of these habitats, however, often exceed the acid tolerance of type species and strains. Here, adaptive laboratory evolution was used over a 3-year period to test whether such organisms harbor additional thermoacidophilic capacity. Three distinct cell lines derived from a single type species were subjected to high-temperature serial passage while culture acidity was gradually increased. A 178-fold increase in thermoacidophily was achieved after 29 increments of shifted culture pH resulting in growth at pH 0.8 and 80°C. These strains were named super-acid-resistant Crenarchaeota (SARC). Mathematical modeling using growth parameters predicted the limits of acid resistance, while genome resequencing and transcriptome resequencing were conducted for insight into mechanisms responsible for the evolved trait. Among the mutations that were detected, a set of eight nonsynonymous changes may explain the heritability of increased acid resistance despite an unexpected lack of transposition. Four multigene components of the SARC transcriptome implicated oxidative stress as a primary challenge accompanying growth at acid extremes. These components included accelerated membrane biogenesis, induction of the mer operon, and an increased capacity for the generation of energy and reductant.


Assuntos
Evolução Molecular Direcionada , Temperatura Alta , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/fisiologia , Adaptação Fisiológica , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Biotecnologia , Genoma Bacteriano , Concentração de Íons de Hidrogênio , Modelos Biológicos , Família Multigênica , Mutação , Óperon , Oxirredução , Estresse Oxidativo/genética , Análise de Sequência de DNA , Sulfolobus solfataricus/crescimento & desenvolvimento , Fatores de Tempo , Transcriptoma
7.
PLoS Genet ; 9(1): e1003233, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23357949

RESUMO

The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP-encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.


Assuntos
Ascomicetos/genética , Peptídeo Sintases/genética , Doenças das Plantas , Policetídeo Sintases/genética , Polimorfismo de Nucleotídeo Único/genética , Ascomicetos/patogenicidade , Sequência de Bases , Evolução Molecular , Variação Genética , Genoma Fúngico , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Virulência/genética
8.
Nat Genet ; 39(8): 1007-12, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17603483

RESUMO

Noonan and LEOPARD syndromes are developmental disorders with overlapping features, including cardiac abnormalities, short stature and facial dysmorphia. Increased RAS signaling owing to PTPN11, SOS1 and KRAS mutations causes approximately 60% of Noonan syndrome cases, and PTPN11 mutations cause 90% of LEOPARD syndrome cases. Here, we report that 18 of 231 individuals with Noonan syndrome without known mutations (corresponding to 3% of all affected individuals) and two of six individuals with LEOPARD syndrome without PTPN11 mutations have missense mutations in RAF1, which encodes a serine-threonine kinase that activates MEK1 and MEK2. Most mutations altered a motif flanking Ser259, a residue critical for autoinhibition of RAF1 through 14-3-3 binding. Of 19 subjects with a RAF1 mutation in two hotspots, 18 (or 95%) showed hypertrophic cardiomyopathy (HCM), compared with the 18% prevalence of HCM among individuals with Noonan syndrome in general. Ectopically expressed RAF1 mutants from the two HCM hotspots had increased kinase activity and enhanced ERK activation, whereas non-HCM-associated mutants were kinase impaired. Our findings further implicate increased RAS signaling in pathological cardiomyocyte hypertrophy.


Assuntos
Cardiomiopatia Hipertrófica/genética , Síndrome LEOPARD/genética , Mutação de Sentido Incorreto , Síndrome de Noonan/genética , Proteínas Proto-Oncogênicas c-raf/genética , Animais , Células COS , Cardiomiopatia Hipertrófica/metabolismo , Chlorocebus aethiops , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome LEOPARD/metabolismo , Síndrome de Noonan/metabolismo , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Transfecção , Proteínas ras/metabolismo
9.
Nat Genet ; 39(1): 75-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17143282

RESUMO

Noonan syndrome is a developmental disorder characterized by short stature, facial dysmorphia, congenital heart defects and skeletal anomalies. Increased RAS-mitogen-activated protein kinase (MAPK) signaling due to PTPN11 and KRAS mutations causes 50% of cases of Noonan syndrome. Here, we report that 22 of 129 individuals with Noonan syndrome without PTPN11 or KRAS mutation have missense mutations in SOS1, which encodes a RAS-specific guanine nucleotide exchange factor. SOS1 mutations cluster at codons encoding residues implicated in the maintenance of SOS1 in its autoinhibited form. In addition, ectopic expression of two Noonan syndrome-associated mutants induces enhanced RAS and ERK activation. The phenotype associated with SOS1 defects lies within the Noonan syndrome spectrum but is distinctive, with a high prevalence of ectodermal abnormalities but generally normal development and linear growth. Our findings implicate gain-of-function mutations in a RAS guanine nucleotide exchange factor in disease for the first time and define a new mechanism by which upregulation of the RAS pathway can profoundly change human development.


Assuntos
Síndrome de Noonan/genética , Proteína SOS1/genética , Animais , Células COS , Chlorocebus aethiops , Análise Mutacional de DNA/métodos , Testes Genéticos , Humanos , Modelos Moleculares , Mutação , Proteína SOS1/química , Transfecção
10.
Plant J ; 79(3): 361-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24888695

RESUMO

Brachypodium distachyon is small annual grass that has been adopted as a model for the grasses. Its small genome, high-quality reference genome, large germplasm collection, and selfing nature make it an excellent subject for studies of natural variation. We sequenced six divergent lines to identify a comprehensive set of polymorphisms and analyze their distribution and concordance with gene expression. Multiple methods and controls were utilized to identify polymorphisms and validate their quality. mRNA-Seq experiments under control and simulated drought-stress conditions, identified 300 genes with a genotype-dependent treatment response. We showed that large-scale sequence variants had extremely high concordance with altered expression of hundreds of genes, including many with genotype-dependent treatment responses. We generated a deep mRNA-Seq dataset for the most divergent line and created a de novo transcriptome assembly. This led to the discovery of >2400 previously unannotated transcripts and hundreds of genes not present in the reference genome. We built a public database for visualization and investigation of sequence variants among these widely used inbred lines.


Assuntos
Brachypodium/genética , Variação Genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Secas , Transcriptoma/genética
11.
BMC Genomics ; 16: 326, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25909478

RESUMO

BACKGROUND: Trichoderma reesei is the main industrial source of cellulases and hemicellulases required for the hydrolysis of biomass to simple sugars, which can then be used in the production of biofuels and biorefineries. The highly productive strains in use today were generated by classical mutagenesis. As byproducts of this procedure, mutants were generated that turned out to be unable to produce cellulases. In order to identify the mutations responsible for this inability, we sequenced the genome of one of these strains, QM9136, and compared it to that of its progenitor T. reesei QM6a. RESULTS: In QM9136, we detected a surprisingly low number of mutagenic events in the promoter and coding regions of genes, i.e. only eight indels and six single nucleotide variants. One of these indels led to a frame-shift in the Zn2Cys6 transcription factor XYR1, the general regulator of cellulase and xylanase expression, and resulted in its C-terminal truncation by 140 amino acids. Retransformation of strain QM9136 with the wild-type xyr1 allele fully recovered the ability to produce cellulases, and is thus the reason for the cellulase-negative phenotype. Introduction of an engineered xyr1 allele containing the truncating point mutation into the moderate producer T. reesei QM9414 rendered this strain also cellulase-negative. The correspondingly truncated XYR1 protein was still able to enter the nucleus, but failed to be expressed over the basal constitutive level. CONCLUSION: The missing 140 C-terminal amino acids of XYR1 are therefore responsible for its previously observed auto-regulation which is essential for cellulases to be expressed. Our data present a working example of the use of genome sequencing leading to a functional explanation of the QM9136 cellulase-negative phenotype.


Assuntos
Celulase/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Fatores de Transcrição/genética , Trichoderma/enzimologia , Trichoderma/genética , Alelos , Núcleo Celular/metabolismo , Celulase/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Análise de Sequência de DNA , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
12.
BMC Genomics ; 16: 24, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613058

RESUMO

BACKGROUND: QTL cloning for the discovery of genes underlying polygenic traits has historically been cumbersome in long-lived perennial plants like Populus. Linkage disequilibrium-based association mapping has been proposed as a cloning tool, and recent advances in high-throughput genotyping and whole-genome resequencing enable marker saturation to levels sufficient for association mapping with no a priori candidate gene selection. Here, multiyear and multienvironment evaluation of cell wall phenotypes was conducted in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree and two partially overlapping populations of unrelated P. trichocarpa genotypes using pyrolysis molecular beam mass spectrometry, saccharification, and/ or traditional wet chemistry. QTL mapping was conducted using a high-density genetic map with 3,568 SNP markers. As a fine-mapping approach, chromosome-wide association mapping targeting a QTL hot-spot on linkage group XIV was performed in the two P. trichocarpa populations. Both populations were genotyped using the 34 K Populus Infinium SNP array and whole-genome resequencing of one of the populations facilitated marker-saturation of candidate intervals for gene identification. RESULTS: Five QTLs ranging in size from 0.6 to 1.8 Mb were mapped on linkage group XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6-carbon sugars using the mapping pedigree. Six candidate loci exhibiting significant associations with phenotypes were identified within QTL intervals. These associations were reproducible across multiple environments, two independent genotyping platforms, and different plant growth stages. cDNA sequencing for allelic variants of three of the six loci identified polymorphisms leading to variable length poly glutamine (PolyQ) stretch in a transcription factor annotated as an ANGUSTIFOLIA C-terminus Binding Protein (CtBP) and premature stop codons in a KANADI transcription factor as well as a protein kinase. Results from protoplast transient expression assays suggested that each of the polymorphisms conferred allelic differences in the activation of cellulose, hemicelluloses, and lignin pathway marker genes. CONCLUSION: This study illustrates the utility of complementary QTL and association mapping as tools for gene discovery with no a priori candidate gene selection. This proof of concept in a perennial organism opens up opportunities for discovery of novel genetic determinants of economically important but complex traits in plants.


Assuntos
Parede Celular/genética , Genes de Plantas , Populus/genética , Alelos , Sequência de Bases , Celulose/metabolismo , Mapeamento Cromossômico , Ligação Genética , Genótipo , Lignina/biossíntese , Escore Lod , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética
13.
Appl Environ Microbiol ; 81(1): 130-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326299

RESUMO

Terpene synthesis in the majority of bacterial species, together with plant plastids, takes place via the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway. The first step of this pathway involves the condensation of pyruvate and glyceraldehyde 3-phosphate by DXP synthase (Dxs), with one-sixth of the carbon lost as CO2. A hypothetical novel route from a pentose phosphate to DXP (nDXP) could enable a more direct pathway from C5 sugars to terpenes and also circumvent regulatory mechanisms that control Dxs, but there is no enzyme known that can convert a sugar into its 1-deoxy equivalent. Employing a selection for complementation of a dxs deletion in Escherichia coli grown on xylose as the sole carbon source, we uncovered two candidate nDXP genes. Complementation was achieved either via overexpression of the wild-type E. coli yajO gene, annotated as a putative xylose reductase, or via various mutations in the native ribB gene. In vitro analysis performed with purified YajO and mutant RibB proteins revealed that DXP was synthesized in both cases from ribulose 5-phosphate (Ru5P). We demonstrate the utility of these genes for microbial terpene biosynthesis by engineering the DXP pathway in E. coli for production of the sesquiterpene bisabolene, a candidate biodiesel. To further improve flux into the pathway from Ru5P, nDXP enzymes were expressed as fusions to DXP reductase (Dxr), the second enzyme in the DXP pathway. Expression of a Dxr-RibB(G108S) fusion improved bisabolene titers more than 4-fold and alleviated accumulation of intracellular DXP.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Pentosefosfatos/metabolismo , Terpenos/metabolismo , Xilose/metabolismo , Biotransformação , Teste de Complementação Genética
14.
Appl Environ Microbiol ; 81(14): 4690-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934627

RESUMO

Limonene, a major component of citrus peel oil, has a number of applications related to microbiology. The antimicrobial properties of limonene make it a popular disinfectant and food preservative, while its potential as a biofuel component has made it the target of renewable production efforts through microbial metabolic engineering. For both applications, an understanding of microbial sensitivity or tolerance to limonene is crucial, but the mechanism of limonene toxicity remains enigmatic. In this study, we characterized a limonene-tolerant strain of Escherichia coli and found a mutation in ahpC, encoding alkyl hydroperoxidase, which alleviated limonene toxicity. We show that the acute toxicity previously attributed to limonene is largely due to the common oxidation product limonene hydroperoxide, which forms spontaneously in aerobic environments. The mutant AhpC protein with an L-to-Q change at position 177 (AhpC(L177Q)) was able to alleviate this toxicity by reducing the hydroperoxide to a more benign compound. We show that the degree of limonene toxicity is a function of its oxidation level and that nonoxidized limonene has relatively little toxicity to wild-type E. coli cells. Our results have implications for both the renewable production of limonene and the applications of limonene as an antimicrobial.


Assuntos
Cicloexenos/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/genética , Mutação Puntual , Terpenos/metabolismo , Cicloexenos/toxicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Limoneno , Peroxirredoxinas/metabolismo , Terpenos/toxicidade
15.
BMC Genomics ; 15: 1103, 2014 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-25494611

RESUMO

BACKGROUND: Cost effective next generation sequencing technologies now enable the production of genomic datasets for many novel planktonic eukaryotes, representing an understudied reservoir of genetic diversity. O. tauri is the smallest free-living photosynthetic eukaryote known to date, a coccoid green alga that was first isolated in 1995 in a lagoon by the Mediterranean sea. Its simple features, ease of culture and the sequencing of its 13 Mb haploid nuclear genome have promoted this microalga as a new model organism for cell biology. Here, we investigated the quality of genome assemblies of Illumina GAIIx 75 bp paired-end reads from Ostreococcus tauri, thereby also improving the existing assembly and showing the genome to be stably maintained in culture. RESULTS: The 3 assemblers used, ABySS, CLCBio and Velvet, produced 95% complete genomes in 1402 to 2080 scaffolds with a very low rate of misassembly. Reciprocally, these assemblies improved the original genome assembly by filling in 930 gaps. Combined with additional analysis of raw reads and PCR sequencing effort, 1194 gaps have been solved in total adding up to 460 kb of sequence. Mapping of RNAseq Illumina data on this updated genome led to a twofold reduction in the proportion of multi-exon protein coding genes, representing 19% of the total 7699 protein coding genes. The comparison of the DNA extracted in 2001 and 2009 revealed the fixation of 8 single nucleotide substitutions and 2 deletions during the approximately 6000 generations in the lab. The deletions either knocked out or truncated two predicted transmembrane proteins, including a glutamate-receptor like gene. CONCLUSION: High coverage (>80 fold) paired-end Illumina sequencing enables a high quality 95% complete genome assembly of a compact ~13 Mb haploid eukaryote. This genome sequence has remained stable for 6000 generations of lab culture.


Assuntos
Clorófitas/genética , Genoma de Planta , Genômica , Biologia Computacional , Evolução Molecular , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Dados de Sequência Molecular
16.
Bioinformatics ; 28(10): 1303-6, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22451271

RESUMO

MOTIVATION: The sequencing of over a thousand natural strains of the model plant Arabidopsis thaliana is producing unparalleled information at the genetic level for plant researchers. To enable the rapid exploitation of these data for functional proteomics studies, we have created a resource for the visualization of protein information and proteomic datasets for sequenced natural strains of A. thaliana. RESULTS: The 1001 Proteomes portal can be used to visualize amino acid substitutions or non-synonymous single-nucleotide polymorphisms in individual proteins of A. thaliana based on the reference genome Col-0. We have used the available processed sequence information to analyze the conservation of known residues subject to protein phosphorylation among these natural strains. The substitution of amino acids in A. thaliana natural strains is heavily constrained and is likely a result of the conservation of functional attributes within proteins. At a practical level, we demonstrate that this information can be used to clarify ambiguously defined phosphorylation sites from phosphoproteomic studies. Protein sets of available natural variants are available for download to enable proteomic studies on these accessions. Together this information can be used to uncover the possible roles of specific amino acids in determining the structure and function of proteins in the model plant A. thaliana. An online portal to enable the community to exploit these data can be accessed at http://1001proteomes.masc-proteomics.org/


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Substituição de Aminoácidos , DNA de Plantas , Bases de Dados de Proteínas , Fosforilação , Polimorfismo de Nucleotídeo Único , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteômica , Análise de Sequência de DNA
17.
J Bacteriol ; 194(24): 7016-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23209255

RESUMO

The DNA sequences of chromosomes I and II of Rhodobacter sphaeroides strain 2.4.1 have been revised, and the annotation of the entire genomic sequence, including both chromosomes and the five plasmids, has been updated. Errors in the originally published sequence have been corrected, and ~11% of the coding regions in the original sequence have been affected by the revised annotation.


Assuntos
Genoma Bacteriano , Rhodobacter sphaeroides/genética , Cromossomos Bacterianos , DNA Bacteriano/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Plasmídeos/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
18.
New Phytol ; 196(3): 713-725, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22861491

RESUMO

• Plant population genomics informs evolutionary biology, breeding, conservation and bioenergy feedstock development. For example, the detection of reliable phenotype-genotype associations and molecular signatures of selection requires a detailed knowledge about genome-wide patterns of allele frequency variation, linkage disequilibrium and recombination. • We resequenced 16 genomes of the model tree Populus trichocarpa and genotyped 120 trees from 10 subpopulations using 29,213 single-nucleotide polymorphisms. • Significant geographic differentiation was present at multiple spatial scales, and range-wide latitudinal allele frequency gradients were strikingly common across the genome. The decay of linkage disequilibrium with physical distance was slower than expected from previous studies in Populus, with r(2) dropping below 0.2 within 3-6 kb. Consistent with this, estimates of recent effective population size from linkage disequilibrium (N(e) ≈ 4000-6000) were remarkably low relative to the large census sizes of P. trichocarpa stands. Fine-scale rates of recombination varied widely across the genome, but were largely predictable on the basis of DNA sequence and methylation features. • Our results suggest that genetic drift has played a significant role in the recent evolutionary history of P. trichocarpa. Most importantly, the extensive linkage disequilibrium detected suggests that genome-wide association studies and genomic selection in undomesticated populations may be more feasible in Populus than previously assumed.


Assuntos
Genoma de Planta , Genômica/métodos , Desequilíbrio de Ligação , Populus/genética , Metilação de DNA , DNA de Plantas/genética , Evolução Molecular , Frequência do Gene , Estudos de Associação Genética/métodos , Deriva Genética , Técnicas de Genotipagem , Geografia , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Recombinação Genética , Seleção Genética , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos
19.
Proc Natl Acad Sci U S A ; 106(38): 16151-6, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805272

RESUMO

Trichoderma reesei (teleomorph Hypocrea jecorina) is the main industrial source of cellulases and hemicellulases harnessed for the hydrolysis of biomass to simple sugars, which can then be converted to biofuels such as ethanol and other chemicals. The highly productive strains in use today were generated by classical mutagenesis. To learn how cellulase production was improved by these techniques, we performed massively parallel sequencing to identify mutations in the genomes of two hyperproducing strains (NG14, and its direct improved descendant, RUT C30). We detected a surprisingly high number of mutagenic events: 223 single nucleotides variants, 15 small deletions or insertions, and 18 larger deletions, leading to the loss of more than 100 kb of genomic DNA. From these events, we report previously undocumented non-synonymous mutations in 43 genes that are mainly involved in nuclear transport, mRNA stability, transcription, secretion/vacuolar targeting, and metabolism. This homogeneity of functional categories suggests that multiple changes are necessary to improve cellulase production and not simply a few clear-cut mutagenic events. Phenotype microarrays show that some of these mutations result in strong changes in the carbon assimilation pattern of the two mutants with respect to the wild-type strain QM6a. Our analysis provides genome-wide insights into the changes induced by classical mutagenesis in a filamentous fungus and suggests areas for the generation of enhanced T. reesei strains for industrial applications such as biofuel production.


Assuntos
Celulase/genética , Proteínas Fúngicas/genética , Genoma Fúngico/genética , Análise de Sequência de DNA/métodos , Trichoderma/genética , Composição de Bases , Celulase/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Mutação , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie , Trichoderma/classificação , Trichoderma/enzimologia
20.
Proc Natl Acad Sci U S A ; 106(9): 3219-24, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19218456

RESUMO

Forward genetic screens with ENU (N-ethyl-N-nitrosourea) mutagenesis can facilitate gene discovery, but mutation identification is often difficult. We present the first study in which an ENU-induced mutation was identified by massively parallel DNA sequencing. This mutation causes heterotaxy and complex congenital heart defects and was mapped to a 2.2-Mb interval on mouse chromosome 7. Massively parallel sequencing of the entire 2.2-Mb interval identified 2 single-base substitutions, one in an intergenic region and a second causing replacement of a highly conserved cysteine with arginine (C193R) in the gene Megf8. Megf8 is evolutionarily conserved from human to fruit fly, and is observed to be ubiquitously expressed. Morpholino knockdown of Megf8 in zebrafish embryos resulted in a high incidence of heterotaxy, indicating a conserved role in laterality specification. Megf8(C193R) mouse mutants show normal breaking of symmetry at the node, but Nodal signaling failed to be propagated to the left lateral plate mesoderm. Videomicroscopy showed nodal cilia motility, which is required for left-right patterning, is unaffected. Although this protein is predicted to have receptor function based on its amino acid sequence, surprisingly confocal imaging showed it is translocated into the nucleus, where it is colocalized with Gfi1b and Baf60C, two proteins involved in chromatin remodeling. Overall, through the recovery of an ENU-induced mutation, we uncovered Megf8 as an essential regulator of left-right patterning.


Assuntos
Padronização Corporal , Etilnitrosoureia/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação/genética , Proteína Nodal/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA