RESUMO
Asparagine is a non-essential amino acid since it can either be taken up via the diet or synthesized by asparagine synthetase. Acute lymphoblastic leukemia (ALL) cells do not express asparagine synthetase or express it only minimally, which makes them completely dependent on extracellular asparagine for their growth and survival. This dependency makes ALL cells vulnerable to treatment with L-asparaginase, an enzyme that hydrolyzes asparagine. To date, all clinically approved L-asparaginases have significant L-glutaminase co-activity, associated with non-immune related toxic side effects observed during therapy. Therefore, reduction of L-glutaminase co-activity with concomitant maintenance of its anticancer L-asparaginase effect may effectively improve the tolerability of this unique drug. Previously, we designed a new alternative variant of Erwinia chrysanthemi (ErA; Erwinaze) with decreased L-glutaminase co-activity, while maintaining its L-asparaginase activity, by the introduction of three key mutations around the active site (ErA-TM). However, Erwinaze and our ErA-TM variant have very short half-lives in vivo. Here, we show that the fusion of ErA-TM with an albumin binding domain (ABD)-tag significantly increases its in vivo persistence. In addition, we evaluated the in vivo therapeutic efficacy of ABD-ErA-TM in a B-ALL xenograft model of SUP-B15. Our results show a comparable long-lasting durable antileukemic effect between the standard-of-care pegylated-asparaginase and ABD-ErA-TM L-asparaginase, but with fewer co-glutaminase-related acute side effects. Since the toxic side effects of current L-asparaginases often result in treatment discontinuation in ALL patients, this novel ErA-TM variant with ultra-low L-glutaminase co-activity and long in vivo persistence may have great clinical potential.
Assuntos
Aspartato-Amônia Ligase , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Asparaginase/farmacologia , Asparaginase/uso terapêutico , Glutaminase/química , Glutaminase/genética , Glutaminase/metabolismo , Asparagina , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia Mieloide Aguda/tratamento farmacológicoRESUMO
Bacterial L-asparaginases play an important role in the treatment of certain types of blood cancers. We are exploring the guinea pig L-asparaginase (gpASNase1) as a potential replacement of the immunogenic bacterial enzymes. The exact mechanism used by L-asparaginases to catalyze the hydrolysis of asparagine into aspartic acid and ammonia has been recently put into question. Earlier experimental data suggested that the reaction proceeds via a covalent intermediate using a ping-pong mechanism, whereas recent computational work advocates the direct displacement of the amine by an activated water. To shed light on this controversy, we generated gpASNase1 mutants of conserved active site residues (T19A, T116A, T19A/T116A, K188M, and Y308F) suspected to play a role in hydrolysis. Using x-ray crystallography, we determined the crystal structures of the T19A, T116A, and K188M mutants soaked in asparagine. We also characterized their steady-state kinetic properties and analyzed the conversion of asparagine to aspartate using NMR. Our structures reveal bound asparagine in the active site that has unambiguously not formed a covalent intermediate. Kinetic and NMR assays detect significant residual activity for all of the mutants. Furthermore, no burst of ammonia production was observed that would indicate covalent intermediate formation and the presence of a ping-pong mechanism. Hence, despite using a variety of techniques, we were unable to obtain experimental evidence that would support the formation of a covalent intermediate. Consequently, our observations support a direct displacement rather than a ping-pong mechanism for l-asparaginases.
Assuntos
Asparaginase/química , Sequência de Aminoácidos , Amônia/metabolismo , Animais , Asparaginase/genética , Asparaginase/metabolismo , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Domínio Catalítico , Cobaias , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ligação ProteicaRESUMO
The initial observation that guinea pig serum kills lymphoma cells marks the serendipitous discovery of a new class of anti-cancer agents. The serum cell killing factor was shown to be an enzyme with L-asparaginase (ASNase) activity. As a direct result of this observation, several bacterial L-asparaginases were developed and are currently approved by the Food and Drug Administration for the treatment of the subset of hematological malignancies that are dependent on the extracellular pool of the amino acid asparagine. As drugs, these enzymes act to hydrolyze asparagine to aspartate, thereby starving the cancer cells of this amino acid. Prior to the work presented here, the precise identity of this guinea pig enzyme has not been reported in the peer-reviewed literature. We discovered that the guinea pig enzyme annotated as H0W0T5_CAVPO, which we refer to as gpASNase1, has the required low Km property consistent with that possessed by the cell-killing guinea pig serum enzyme. Elucidation of the ligand-free and aspartate complex gpASNase1 crystal structures allows a direct comparison with the bacterial enzymes and serves to explain the lack of L-glutaminase activity in the guinea pig enzyme. The structures were also used to generate a homology model for the human homolog hASNase1 and to help explain its vastly different kinetic properties compared with gpASNase1, despite a 70% sequence identity. Given that the bacterial enzymes frequently present immunogenic and other toxic side effects, this work suggests that gpASNase1 could be a promising alternative to these bacterial enzymes.
Assuntos
Antineoplásicos/química , Asparaginase/química , Animais , Antineoplásicos/uso terapêutico , Asparaginase/genética , Asparaginase/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/uso terapêutico , Cristalografia por Raios X , Cobaias , Humanos , Proteínas Recombinantes , Homologia Estrutural de ProteínaRESUMO
We investigated whether an uncharacterized protein from guinea pig could be the enzyme behind Kidd's serendipitous discovery, made over 60 years ago, that guinea pig serum has cell killing ability. It has been long known that an enzyme with l-asparaginase activity is responsible for cell killing, although astonishingly, its identity remains unclear. Bacterial asparaginases with similar cell killing properties have since become a mainstay therapy of certain cancers such as acute lymphoblastic leukemia. By hydrolyzing asparagine to aspartate and ammonia, these drugs deplete the asparagine present in the blood, killing cancer cells that rely on extracellular asparagine uptake for survival. However, bacterial asparaginases can elicit an adverse immune response. We propose that replacement of bacterial enzymes with the guinea pig asparaginase responsible for serum activity, by its virtue of being more closely related to human enzymes, will be less immunogenic. To this goal, we investigated whether an uncharacterized protein from guinea pig with putative asparaginase activity, which we call gpASNase3, could be that enzyme. We examined its self-activation process (gpASNase3 requires autocleavage to become active), kinetically characterized it for asparaginase and ß-aspartyl dipeptidase activity, and elucidated its crystal structure in both the uncleaved and cleaved states. This work reveals that gpASNase3 is not the enzyme responsible for the antitumor effects of guinea pig serum. It exhibits a low affinity for asparagine as measured by a high Michaelis constant, KM, in the millimolar range, in contrast to the low KM (micromolar range) required for asparaginase to be effective as an anticancer agent.
Assuntos
Asparaginase/metabolismo , Sequência de Aminoácidos , Animais , Asparaginase/química , Asparaginase/genética , Domínio Catalítico , Clonagem Molecular , Cobaias , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de AminoácidosRESUMO
L-Asparaginase (L-ASNase) is an enzyme that hydrolyses the amino acid asparagine into aspartic acid and ammonia. Systemic administration of bacterial L-ASNase is successfully used to lower the bioavailability of this non-essential amino acid and to eradicate rapidly proliferating cancer cells with a high demand for exogenous asparagine. Currently, it is a cornerstone drug in the treatment of the most common pediatric cancer, acute lymphoblastic leukemia (ALL). Since these lymphoblasts lack the expression of asparagine synthetase (ASNS), these cells depend on the uptake of extracellular asparagine for survival. Interestingly, recent reports have illustrated that L-ASNase may also have clinical potential for the treatment of other aggressive subtypes of hematological or solid cancers. However, immunogenic and other severe adverse side effects limit optimal clinical use and often lead to treatment discontinuation. The design of optimized and novel L-ASNase formulations provides opportunities to overcome these limitations. In addition, identification of multiple L-ASNase resistance mechanisms, including ASNS promoter reactivation and desensitization, has fueled research into promising novel drug combinations to overcome chemoresistance. In this review, we discuss recent insights into L-ASNase adverse effects, resistance both in hematological and solid tumors, and how novel L-ASNase variants and drug combinations can expand its clinical applicability.
RESUMO
The Atg12-Atg5/Atg16L1 complex is recruited by WIPI2b to the site of autophagosome formation. Atg16L1 is an effector of the Golgi resident GTPase Rab33B. Here we identified a minimal stable complex of murine Rab33B(30-202) Q92L and Atg16L1(153-210). Atg16L1(153-210) comprises the C-terminal part of the Atg16L1 coiled-coil domain. We have determined the crystal structure of the Rab33B Q92L/Atg16L1(153-210) effector complex at 3.47 Å resolution. This structure reveals that two Rab33B molecules bind to the diverging α-helices of the dimeric Atg16L1 coiled-coil domain. We mutated Atg16L1 and Rab33B interface residues and found that they disrupt complex formation in pull-down assays and cellular co-localization studies. The Rab33B binding site of Atg16L1 comprises 20 residues and immediately precedes the WIPI2b binding site. Rab33B mutations that abolish Atg16L binding also abrogate Rab33B association with the Golgi stacks. Atg16L1 mutants that are defective in Rab33B binding still co-localize with WIPI2b in vivo. The close proximity of the Rab33B and WIPI2b binding sites might facilitate the recruitment of Rab33B containing vesicles to provide a source of lipids during autophagosome biogenesis.
Assuntos
Proteínas Relacionadas à Autofagia/química , Complexos Multiproteicos/química , Proteínas rab de Ligação ao GTP/química , Animais , Proteínas Relacionadas à Autofagia/genética , Sítios de Ligação , Cristalografia por Raios X , Camundongos , Complexos Multiproteicos/genética , Mutação , Estrutura Quaternária de Proteína , Proteínas rab de Ligação ao GTP/genéticaRESUMO
Acute lymphoblastic leukemia (ALL) is the most common type of pediatric cancer, although about 4 of every 10 cases occur in adults. The enzyme drug l-asparaginase serves as a cornerstone of ALL therapy and exploits the asparagine dependency of ALL cells. In addition to hydrolyzing the amino acid l-asparagine, all FDA-approved l-asparaginases also have significant l-glutaminase coactivity. Since several reports suggest that l-glutamine depletion correlates with many of the side effects of these drugs, enzyme variants with reduced l-glutaminase coactivity might be clinically beneficial if their antileukemic activity would be preserved. Here we show that novel low l-glutaminase variants developed on the backbone of the FDA-approved Erwinia chrysanthemi l-asparaginase were highly efficacious against both T- and B-cell ALL, while displaying reduced acute toxicity features. These results support the development of a new generation of safer l-asparaginases without l-glutaminase activity for the treatment of human ALL.Significance: A new l-asparaginase-based therapy is less toxic compared with FDA-approved high l-glutaminase enzymes Cancer Res; 78(6); 1549-60. ©2018 AACR.
Assuntos
Antineoplásicos/farmacologia , Asparaginase/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Proteínas Recombinantes/metabolismo , Animais , Asparaginase/genética , Asparaginase/metabolismo , Asparaginase/farmacocinética , Linhagem Celular Tumoral , Feminino , Glutaminase/metabolismo , Glutamina/sangue , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Testes de Toxicidade Aguda , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
L-asparaginase is a chemotherapy drug used to treat acute lymphoblastic leukemia (ALL). The main prerequisite for clinical efficacy of L-asparaginases is micromolar KM for asparagine to allow for complete depletion of this amino acid in the blood. Since currently approved L-asparaginases are of bacterial origin, immunogenicity is a challenge, which would be mitigated by a human enzyme. However, all human L-asparaginases have millimolar KM for asparagine. We recently identified the low KM guinea pig L-asparaginase (gpASNase1). Because gpASNase1 and human L-asparaginase 1 (hASNase1) share ~70% amino-acid identity, we decided to humanize gpASNase1 by generating chimeras with hASNase1 through DNA shuffling. To identify low KM chimeras we developed a suitable bacterial selection system (E. coli strain BW5Δ). Transforming BW5Δ with the shuffling libraries allowed for the identification of several low KM clones. To further humanize these clones, the C-terminal domain of gpASNase1 was replaced with that of hASNase1. Two of the identified clones, 63N-hC and 65N-hC, share respectively 85.7% and 87.1% identity with the hASNase1 but have a KM similar to gpASNase1. These clones possess 100-140 fold enhanced catalytic efficiency compared to hASNase1. Notably, we also show that these highly human-like L-asparaginases maintain their in vitro ALL killing potential.
Assuntos
Asparaginase/genética , Asparagina/genética , Autoantígenos/genética , Embaralhamento de DNA/métodos , Proteínas Recombinantes/metabolismo , Animais , Asparaginase/química , Asparaginase/metabolismo , Asparagina/química , Asparagina/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Evolução Molecular Direcionada , Cobaias , Humanos , Cinética , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Homologia de Sequência do Ácido NucleicoRESUMO
Liposome flotation assays are a convenient tool to study protein-phosphoinositide interactions. Working with liposomes resembles physiological conditions more than protein-lipid overlay assays, which makes this method less prone to detect false positive interactions. However, liposome lipid composition must be well-considered in order to prevent nonspecific binding of the protein through electrostatic interactions with negatively charged lipids like phosphatidylserine. In this protocol we use the PROPPIN Hsv2 (homologous with swollen vacuole phenotype 2) as an example to demonstrate the influence of liposome lipid composition on binding and show how phosphoinositide binding specificities of a protein can be characterized with this method.
Assuntos
Lipossomos , Fosfatidilinositóis , Proteínas , Lipossomos/química , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Eletricidade EstáticaRESUMO
Small GTPases of the Rab family not only regulate target recognition in membrane traffic but also control other cellular functions such as cytoskeletal transport and autophagy. Here we show that Rab26 is specifically associated with clusters of synaptic vesicles in neurites. Overexpression of active but not of GDP-preferring Rab26 enhances vesicle clustering, which is particularly conspicuous for the EGFP-tagged variant, resulting in a massive accumulation of synaptic vesicles in neuronal somata without altering the distribution of other organelles. Both endogenous and induced clusters co-localize with autophagy-related proteins such as Atg16L1, LC3B and Rab33B but not with other organelles. Furthermore, Atg16L1 appears to be a direct effector of Rab26 and binds Rab26 in its GTP-bound form, albeit only with low affinity. We propose that Rab26 selectively directs synaptic and secretory vesicles into preautophagosomal structures, suggesting the presence of a novel pathway for degradation of synaptic vesicles.