Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33372131

RESUMO

Genetic changes that altered the function of gene regulatory elements have been implicated in the evolution of human traits such as the expansion of the cerebral cortex. However, identifying the particular changes that modified regulatory activity during human evolution remain challenging. Here we used massively parallel enhancer assays in neural stem cells to quantify the functional impact of >32,000 human-specific substitutions in >4,300 human accelerated regions (HARs) and human gain enhancers (HGEs), which include enhancers with novel activities in humans. We found that >30% of active HARs and HGEs exhibited differential activity between human and chimpanzee. We isolated the effects of human-specific substitutions from background genetic variation to identify the effects of genetic changes most relevant to human evolution. We found that substitutions interacted in both additive and nonadditive ways to modify enhancer function. Substitutions within HARs, which are highly constrained compared to HGEs, showed smaller effects on enhancer activity, suggesting that the impact of human-specific substitutions is buffered in enhancers with constrained ancestral functions. Our findings yield insight into how human-specific genetic changes altered enhancer function and provide a rich set of candidates for studies of regulatory evolution in humans.


Assuntos
Evolução Biológica , Elementos Facilitadores Genéticos , Genoma Humano , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Humanos , Neocórtex , Pan troglodytes/genética
2.
J Inherit Metab Dis ; 46(2): 194-205, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36680545

RESUMO

Improved second-tier assays are needed to reduce the number of false positives in newborn screening (NBS) for inherited metabolic disorders including those on the Recommended Uniform Screening Panel (RUSP). We developed an expanded metabolite panel for second-tier testing of dried blood spot (DBS) samples from screen-positive cases reported by the California NBS program, consisting of true- and false-positives from four disorders: glutaric acidemia type I (GA1), methylmalonic acidemia (MMA), ornithine transcarbamylase deficiency (OTCD), and very long-chain acyl-CoA dehydrogenase deficiency (VLCADD). This panel was assembled from known disease markers and new features discovered by untargeted metabolomics and applied to second-tier analysis of single DBS punches using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a 3-min run. Additionally, we trained a Random Forest (RF) machine learning classifier to improve separation of true- and false positive cases. Targeted metabolomic analysis of 121 analytes from DBS extracts in combination with RF classification at a sensitivity of 100% reduced false positives for GA1 by 83%, MMA by 84%, OTCD by 100%, and VLCADD by 51%. This performance was driven by a combination of known disease markers (3-hydroxyglutaric acid, methylmalonic acid, citrulline, and C14:1), other amino acids and acylcarnitines, and novel metabolites identified to be isobaric to several long-chain acylcarnitine and hydroxy-acylcarnitine species. These findings establish the effectiveness of this second-tier test to improve screening for these four conditions and demonstrate the utility of supervised machine learning in reducing false-positives for conditions lacking clearly discriminating markers, with future studies aimed at optimizing and expanding the panel to additional disease targets.


Assuntos
Triagem Neonatal , Doença da Deficiência de Ornitina Carbomoiltransferase , Humanos , Recém-Nascido , Triagem Neonatal/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem
3.
Mol Genet Metab ; 137(3): 292-300, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36252453

RESUMO

DNA polymorphic markers and self-defined ethnicity groupings are used to group individuals with shared ancient geographic ancestry. Here we studied whether ancestral relationships between individuals could be identified from metabolic screening data reported by the California newborn screening (NBS) program. NBS data includes 41 blood metabolites measured by tandem mass spectrometry from singleton babies in 17 parent-reported ethnicity groupings. Ethnicity-associated differences identified for 71% of NBS metabolites (29 of 41, Cohen's d > 0.5) showed larger differences in blood levels of acylcarnitines than of amino acids (P < 1e-4). A metabolic distance measure, developed to compare ethnic groupings based on metabolic differences, showed low positive correlation with genetic and ancient geographic distances between the groups' ancestral world populations. Several outlier group pairs were identified with larger genetic and smaller metabolic distances (Black versus White) or with smaller genetic and larger metabolic distances (Chinese versus Japanese) indicating the influence of genetic and of environmental factors on metabolism. Using machine learning, comparison of metabolic profiles between all pairs of ethnic groupings distinguished individuals with larger genetic distance (Black versus Chinese, AUC = 0.96), while genetically more similar individuals could not be separated metabolically (Hispanic versus Native American, AUC = 0.51). Additionally, we identified metabolites informative for inferring metabolic ancestry in individuals from genetically similar populations, which included biomarkers for inborn metabolic disorders (C10:1, C12:1, C3, C5OH, Leucine-Isoleucine). This work sheds new light on metabolic differences in healthy newborns in diverse populations, which could have implications for improving genetic disease screening.


Assuntos
Erros Inatos do Metabolismo , Humanos , Recém-Nascido , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/epidemiologia , Erros Inatos do Metabolismo/genética , Triagem Neonatal/métodos , Espectrometria de Massas em Tandem/métodos , Aminoácidos/genética , Biomarcadores
4.
Hum Genet ; 140(12): 1753-1773, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34643790

RESUMO

Single-nucleotide polymorphisms (SNPs) and small genomic regions with multiple SNPs (microhaplotypes, MHs) are rapidly emerging as novel forensic investigative tools to assist in individual identification, kinship analyses, ancestry inference, and deconvolution of DNA mixtures. Here, we analyzed information for 90 microhaplotype loci in 4009 individuals from 79 world populations in 6 major biogeographic regions. The study included multiplex microhaplotype sequencing (mMHseq) data analyzed for 524 individuals from 16 populations and genotype data for 3485 individuals from 63 populations curated from public repositories. Analyses of the 79 populations revealed excellent characteristics for this 90-plex MH panel for various forensic applications achieving an overall average effective number of allele values (Ae) of 4.55 (range 1.04-19.27) for individualization and mixture deconvolution. Population-specific random match probabilities ranged from a low of 10-115 to a maximum of 10-66. Mean informativeness (In) for ancestry inference was 0.355 (range 0.117-0.883). 65 novel SNPs were detected in 39 of the MHs using mMHseq. Of the 3018 different microhaplotype alleles identified, 1337 occurred at frequencies > 5% in at least one of the populations studied. The 90-plex MH panel enables effective differentiation of population groupings for major biogeographic regions as well as delineation of distinct subgroupings within regions. Open-source, web-based software is available to support validation of this technology for forensic case work analysis and to tailor MH analysis for specific geographical regions.


Assuntos
Genética Forense , Haplótipos , Polimorfismo de Nucleotídeo Único , Marcadores Genéticos , Genética Populacional , Humanos , Análise de Sequência de DNA
5.
J Inherit Metab Dis ; 43(5): 934-943, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32216101

RESUMO

Newborn screening (NBS) programmes utilise information on a variety of clinical variables such as gestational age, sex, and birth weight to reduce false-positive screens for inborn metabolic disorders. Here we study the influence of ethnicity on metabolic marker levels in a diverse newborn population. NBS data from screen-negative singleton babies (n = 100 000) were analysed, which included blood metabolic markers measured by tandem mass spectrometry and ethnicity status reported by the parents. Metabolic marker levels were compared between major ethnic groups (Asian, Black, Hispanic, White) using effect size analysis, which controlled for group size differences and influence from clinical variables. Marker level differences found between ethnic groups were correlated to NBS data from 2532 false-positive cases for four metabolic diseases: glutaric acidemia type 1 (GA-1), methylmalonic acidemia (MMA), ornithine transcarbamylase deficiency (OTCD), and very long-chain acyl-CoA dehydrogenase deficiency (VLCADD). In the result, 79% of the metabolic markers (34 of 43) had ethnicity-related differences. Compared to the other groups, Black infants had elevated GA-1 markers (C5DC, Cohen's d = .37, P < .001), Hispanics had elevated MMA markers (C3, Cohen's d = .13, P < .001, and C3/C2, Cohen's d = .27, P < .001); and Whites had elevated VLCADD markers (C14, Cohen's d = .28, P < .001, and C14:1, Cohen's d = .22, P < .001) and decreased OTCD markers (citrulline, Cohen's d = -.26, P < .001). These findings correlated with the higher false-positive rates in Black infants for GA-1, in Hispanics for MMA, and in Whites for OTCD and for VLCADD. Web-based tools are available to analyse ethnicity-related changes in newborn metabolism and to support developing methods to identify false-positives in metabolic screening.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Síndrome Congênita de Insuficiência da Medula Óssea/diagnóstico , Etnicidade/estatística & dados numéricos , Erros Inatos do Metabolismo Lipídico/diagnóstico , Doenças Mitocondriais/diagnóstico , Doenças Musculares/diagnóstico , Triagem Neonatal/métodos , Doença da Deficiência de Ornitina Carbomoiltransferase/diagnóstico , Acil-CoA Desidrogenase de Cadeia Longa/sangue , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Biomarcadores/sangue , Encefalopatias Metabólicas/sangue , California , Síndrome Congênita de Insuficiência da Medula Óssea/sangue , Reações Falso-Positivas , Feminino , Idade Gestacional , Glutaril-CoA Desidrogenase/sangue , Glutaril-CoA Desidrogenase/deficiência , Humanos , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/sangue , Masculino , Doenças Mitocondriais/sangue , Doenças Musculares/sangue , Doença da Deficiência de Ornitina Carbomoiltransferase/sangue , Espectrometria de Massas em Tandem
6.
Genet Med ; 21(4): 896-903, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30209273

RESUMO

PURPOSE: Improved second-tier tools are needed to reduce false-positive outcomes in newborn screening (NBS) for inborn metabolic disorders on the Recommended Universal Screening Panel (RUSP). METHODS: We designed an assay for multiplex sequencing of 72 metabolic genes (RUSPseq) from newborn dried blood spots. Analytical and clinical performance was evaluated in 60 screen-positive newborns for methylmalonic acidemia (MMA) reported by the California Department of Public Health NBS program. Additionally, we trained a Random Forest machine learning classifier on NBS data to improve prediction of true and false-positive MMA cases. RESULTS: Of 28 MMA patients sequenced, we found two pathogenic or likely pathogenic (P/LP) variants in a MMA-related gene in 24 patients, and one pathogenic variant and a variant of unknown significance (VUS) in 1 patient. No such variant combinations were detected in MMA false positives and healthy controls. Random Forest-based analysis of the entire NBS metabolic profile correctly identified the MMA patients and reduced MMA false-positive cases by 51%. MMA screen-positive newborns were more likely of Hispanic ethnicity. CONCLUSION: Our two-pronged approach reduced false positives by half and provided a reportable molecular finding for 89% of MMA patients. Challenges remain in newborn metabolic screening and DNA variant interpretation in diverse multiethnic populations.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/sangue , Variação Genética , Erros Inatos do Metabolismo/sangue , Triagem Neonatal , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Teste em Amostras de Sangue Seco , Feminino , Humanos , Recém-Nascido , Aprendizado de Máquina , Masculino , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/patologia
7.
Mol Genet Metab ; 126(1): 39-42, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30448007

RESUMO

Analysis of California newborn screening (NBS) data revealed a high prevalence of Hispanic infants testing positive for methylmalonic acidemia (MMA), a trend seen for both true- and false-positive cases. Here we show that Hispanic infants have significantly higher levels of MMA screening markers than non-Hispanics. Preterm birth and increased birth weight were found to be associated with elevated MMA marker levels but could not entirely explain these differences. While the preterm birth rate was higher in Blacks than Hispanics, Black infants had on average the lowest MMA marker levels. Preterm birth was associated with lower birth weight and increased MMA marker levels suggesting that gestational age is the stronger predictive covariate compared to birth weight. These findings could help explain why MMA false-positive results are more likely in Hispanic than in Black infants, which could inform screening and diagnostic procedures for MMA and potentially other disorders in newborns.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/etnologia , Hispânico ou Latino , Nascimento Prematuro/etnologia , Negro ou Afro-Americano/estatística & dados numéricos , Biomarcadores/sangue , Peso ao Nascer , California/epidemiologia , Reações Falso-Positivas , Feminino , Idade Gestacional , Hispânico ou Latino/estatística & dados numéricos , Humanos , Recém-Nascido , Masculino , Ácido Metilmalônico/sangue , Triagem Neonatal , Saúde Pública
9.
J Pediatr ; 181: 80-85.e1, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27836286

RESUMO

OBJECTIVE: To evaluate the association between newborn acylcarnitine profiles and the subsequent development of necrotizing enterocolitis (NEC) with the use of routinely collected newborn screening data in infants born preterm. STUDY DESIGN: A retrospective cohort study was conducted with the use of discharge records for infants born preterm admitted to neonatal intensive care units in California from 2005 to 2009 who had linked state newborn screening results. A model-development cohort of 94 110 preterm births from 2005 to 2008 was used to develop a risk-stratification model that was then applied to a validation cohort of 22 992 births from 2009. RESULTS: Fourteen acylcarnitine levels and acylcarnitine ratios were associated with increased risk of developing NEC. Each log unit increase in C5 and free carnitine /(C16 + 18:1) was associated with a 78% and a 76% increased risk for developing NEC, respectively (OR 1.78, 95% CI 1.53-2.02, and OR 1.76, 95% CI 1.51-2.06). Six acylcarnitine levels, along with birth weight and total parenteral nutrition, identified 89.8% of newborns with NEC in the model-development cohort (area under the curve 0.898, 95% CI 0.889-0.907) and 90.8% of the newborns with NEC in the validation cohort (area under the curve 0.908, 95% CI 0.901-0.930). CONCLUSIONS: Abnormal fatty acid metabolism was associated with prematurity and the development of NEC. Metabolic profiling through newborn screening may serve as an objective biologic surrogate of risk for the development of disease and thus facilitate disease-prevention strategies.


Assuntos
Carnitina/análogos & derivados , Enterocolite Necrosante/diagnóstico , Enterocolite Necrosante/metabolismo , Recém-Nascido Prematuro , Biomarcadores/análise , California , Carnitina/análise , Carnitina/sangue , Estudos de Coortes , Intervalos de Confiança , Enterocolite Necrosante/epidemiologia , Feminino , Seguimentos , Idade Gestacional , Humanos , Incidência , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Masculino , Análise Multivariada , Triagem Neonatal/métodos , Razão de Chances , Reprodutibilidade dos Testes , Estudos Retrospectivos , Medição de Risco , Populações Vulneráveis
10.
Circ Res ; 117(7): 603-11, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26265630

RESUMO

RATIONALE: Thousands of mutations across >50 genes have been implicated in inherited cardiomyopathies. However, options for sequencing this rapidly evolving gene set are limited because many sequencing services and off-the-shelf kits suffer from slow turnaround, inefficient capture of genomic DNA, and high cost. Furthermore, customization of these assays to cover emerging targets that suit individual needs is often expensive and time consuming. OBJECTIVE: We sought to develop a custom high throughput, clinical-grade next-generation sequencing assay for detecting cardiac disease gene mutations with improved accuracy, flexibility, turnaround, and cost. METHODS AND RESULTS: We used double-stranded probes (complementary long padlock probes), an inexpensive and customizable capture technology, to efficiently capture and amplify the entire coding region and flanking intronic and regulatory sequences of 88 genes and 40 microRNAs associated with inherited cardiomyopathies, congenital heart disease, and cardiac development. Multiplexing 11 samples per sequencing run resulted in a mean base pair coverage of 420, of which 97% had >20× coverage and >99% were concordant with known heterozygous single nucleotide polymorphisms. The assay correctly detected germline variants in 24 individuals and revealed several polymorphic regions in miR-499. Total run time was 3 days at an approximate cost of $100 per sample. CONCLUSIONS: Accurate, high-throughput detection of mutations across numerous cardiac genes is achievable with complementary long padlock probe technology. Moreover, this format allows facile insertion of additional probes as more cardiomyopathy and congenital heart disease genes are discovered, giving researchers a powerful new tool for DNA mutation detection and discovery.


Assuntos
Análise Custo-Benefício , Cardiopatias/economia , Cardiopatias/genética , Sequenciamento de Nucleotídeos em Larga Escala/economia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequência de Bases , Marcação de Genes/economia , Marcação de Genes/métodos , Cardiopatias/diagnóstico , Humanos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Fatores de Tempo
11.
Proc Natl Acad Sci U S A ; 110(10): 3985-90, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23426633

RESUMO

Next-generation sequencing is revolutionizing genomic analysis, but this analysis can be compromised by high rates of missing true variants. To develop a robust statistical method capable of identifying variants that would otherwise not be called, we conducted sequence data simulations and both whole-genome and targeted sequencing data analysis of 28 families. Our method (Family-Based Sequencing Program, FamSeq) integrates Mendelian transmission information and raw sequencing reads. Sequence analysis using FamSeq reduced the number of false negative variants by 14-33% as assessed by HapMap sample genotype confirmation. In a large family affected with Wilms tumor, 84% of variants uniquely identified by FamSeq were confirmed by Sanger sequencing. In children with early-onset neurodevelopmental disorders from 26 families, de novo variant calls in disease candidate genes were corrected by FamSeq as mendelian variants, and the number of uniquely identified variants in affected individuals increased proportionally as additional family members were included in the analysis. To gain insight into maximizing variant detection, we studied factors impacting actual improvements of family-based calling, including pedigree structure, allele frequency (common vs. rare variants), prior settings of minor allele frequency, sequence signal-to-noise ratio, and coverage depth (∼20× to >200×). These data will help guide the design, analysis, and interpretation of family-based sequencing studies to improve the ability to identify new disease-associated genes.


Assuntos
Variação Genética , Análise de Sequência de DNA/métodos , Teorema de Bayes , Família , Feminino , Genoma Humano , Humanos , Neoplasias Renais/genética , Funções Verossimilhança , Masculino , Doenças Mitocondriais/genética , Modelos Genéticos , Doenças Neurodegenerativas/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/estatística & dados numéricos , Software , Tumor de Wilms/genética
12.
BMC Genomics ; 15: 263, 2014 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-24708151

RESUMO

BACKGROUND: Copper is essential for the survival of aerobic organisms. If copper is not properly regulated in the body however, it can be extremely cytotoxic and genetic mutations that compromise copper homeostasis result in severe clinical phenotypes. Understanding how cells maintain optimal copper levels is therefore highly relevant to human health. RESULTS: We found that addition of copper (Cu) to culture medium leads to increased respiratory growth of yeast, a phenotype which we then systematically and quantitatively measured in 5050 homozygous diploid deletion strains. Cu's positive effect on respiratory growth was quantitatively reduced in deletion strains representing 73 different genes, the function of which identify increased iron uptake as a cause of the increase in growth rate. Conversely, these effects were enhanced in strains representing 93 genes. Many of these strains exhibited respiratory defects that were specifically rescued by supplementing the growth medium with Cu. Among the genes identified are known and direct regulators of copper homeostasis, genes required to maintain low vacuolar pH, and genes where evidence supporting a functional link with Cu has been heretofore lacking. Roughly half of the genes are conserved in man, and several of these are associated with Mendelian disorders, including the Cu-imbalance syndromes Menkes and Wilson's disease. We additionally demonstrate that pharmacological agents, including the approved drug disulfiram, can rescue Cu-deficiencies of both environmental and genetic origin. CONCLUSIONS: A functional screen in yeast has expanded the list of genes required for Cu-dependent fitness, revealing a complex cellular system with implications for human health. Respiratory fitness defects arising from perturbations in this system can be corrected with pharmacological agents that increase intracellular copper concentrations.


Assuntos
Cobre/metabolismo , Homeostase/genética , Leveduras/genética , Leveduras/metabolismo , Respiração Celular , Análise por Conglomerados , Cobre/deficiência , Meios de Cultura , Dissulfiram/farmacologia , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Homeostase/efeitos dos fármacos , Humanos , Hidrazinas/farmacologia , Concentração de Íons de Hidrogênio , Fenótipo , Vacúolos/genética , Vacúolos/metabolismo , Leveduras/efeitos dos fármacos
13.
Proc Natl Acad Sci U S A ; 108(16): 6549-54, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21467225

RESUMO

The accurate and complete selection of candidate genomic regions from a DNA sample before sequencing is critical in molecular diagnostics. Several recently developed technologies await substantial improvements in performance, cost, and multiplex sample processing. Here we present the utility of long padlock probes (LPPs) for targeted exon capture followed by array-based sequencing. We found that on average 92% of 5,471 exons from 524 nuclear-encoded mitochondrial genes were successfully amplified from genomic DNA from 63 individuals. Only 144 exons did not amplify in any sample due to high GC content. One LPP was sufficient to capture sequences from <100-500 bp in length and only a single-tube capture reaction and one microarray was required per sample. Our approach was highly reproducible and quick (<8 h) and detected DNA variants at high accuracy (false discovery rate 1%, false negative rate 3%) on the basis of known sample SNPs and Sanger sequence verification. In a patient with clinical and biochemical presentation of ornithine transcarbamylase (OTC) deficiency, we identified copy-number differences in the OTC gene at exon-level resolution. This shows the ability of LPPs to accurately preserve a sample's genome information and provides a cost-effective strategy to identify both single nucleotide changes and structural variants in targeted resequencing.


Assuntos
Éxons/genética , Doenças Genéticas Inatas/genética , Estudo de Associação Genômica Ampla/métodos , Proteínas Mitocondriais/genética , Polimorfismo de Nucleotídeo Único , Análise Mutacional de DNA/métodos , Feminino , Humanos , Masculino
14.
Bioinformatics ; 28(14): 1928-30, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22581181

RESUMO

UNLABELLED: Sequencing by hybridization to oligonucleotides has evolved into an inexpensive, reliable and fast technology for targeted sequencing. Hundreds of human genes can now be sequenced within a day using a single hybridization to a resequencing microarray. However, several issues inherent to these arrays (e.g. cross-hybridization, variable probe/target affinity) cause sequencing errors and have prevented more widespread applications. We developed an R package for resequencing microarray data analysis that integrates a novel statistical algorithm, sequence robust multi-array analysis (SRMA), for rare variant detection with high sensitivity (false negative rate, FNR 5%) and accuracy (false positive rate, FPR 1×10⁻5). The SRMA package consists of five modules for quality control, data normalization, single array analysis, multi-array analysis and output analysis. The entire workflow is efficient and identifies rare DNA single nucleotide variations and structural changes such as gene deletions with high accuracy and sensitivity. AVAILABILITY: http://cran.r-project.org/, http://odin.mdacc.tmc.edu/~wwang7/SRMAIndex.html


Assuntos
Algoritmos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/métodos , Software , Biologia Computacional/métodos , Humanos
15.
Nucleic Acids Res ; 39(1): 44-58, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20843780

RESUMO

A common goal in the discovery of rare functional DNA variants via medical resequencing is to incur a relatively lower proportion of false positive base-calls. We developed a novel statistical method for resequencing arrays (SRMA, sequence robust multi-array analysis) to increase the accuracy of detecting rare variants and reduce the costs in subsequent sequence verifications required in medical applications. SRMA includes single and multi-array analysis and accounts for technical variables as well as the possibility of both low- and high-frequency genomic variation. The confidence of each base-call was ranked using two quality measures. In comparison to Sanger capillary sequencing, we achieved a false discovery rate of 2% (false positive rate 1.2 × 10⁻5, false negative rate 5%), which is similar to automated second-generation sequencing technologies. Applied to the analysis of 39 nuclear candidate genes in disorders of mitochondrial DNA (mtDNA) maintenance, we confirmed mutations in the DNA polymerase gamma POLG in positive control cases, and identified novel rare variants in previously undiagnosed cases in the mitochondrial topoisomerase TOP1MT, the mismatch repair enzyme MUTYH, and the apurinic-apyrimidinic endonuclease APEX2. Some patients carried rare heterozygous variants in several functionally interacting genes, which could indicate synergistic genetic effects in these clinically similar disorders.


Assuntos
Variação Genética , Doenças Mitocondriais/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Sequência de Bases , Interpretação Estatística de Dados , Humanos , Mutação INDEL , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos/normas , Polimorfismo de Nucleotídeo Único , Controle de Qualidade , Análise de Sequência de DNA/normas
16.
Nat Genet ; 31(4): 400-4, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12134146

RESUMO

High similarity between yeast and human mitochondria allows functional genomic study of Saccharomyces cerevisiae to be used to identify human genes involved in disease. So far, 102 heritable disorders have been attributed to defects in a quarter of the known nuclear-encoded mitochondrial proteins in humans. Many mitochondrial diseases remain unexplained, however, in part because only 40-60% of the presumed 700-1,000 proteins involved in mitochondrial function and biogenesis have been identified. Here we apply a systematic functional screen using the pre-existing whole-genome pool of yeast deletion mutants to identify mitochondrial proteins. Three million measurements of strain fitness identified 466 genes whose deletions impaired mitochondrial respiration, of which 265 were new. Our approach gave higher selection than other systematic approaches, including fivefold greater selection than gene expression analysis. To apply these advantages to human disorders involving mitochondria, human orthologs were identified and linked to heritable diseases using genomic map positions.


Assuntos
Genômica/métodos , Doenças Mitocondriais/genética , Saccharomyces cerevisiae/genética , Transporte Biológico , Divisão Celular/genética , Ciclo do Ácido Cítrico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Genoma Fúngico , Genoma Humano , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fases de Leitura Aberta , Saccharomyces cerevisiae/crescimento & desenvolvimento , Deleção de Sequência
17.
Metabolites ; 14(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276295

RESUMO

Pregnancy at an advanced maternal age is considered a risk factor for adverse maternal, fetal, and neonatal outcomes. Here we investigated whether maternal age could be associated with differences in the blood levels of newborn screening (NBS) markers for inborn metabolic disorders on the Recommended Universal Screening Panel (RUSP). Population-level NBS data from screen-negative singleton infants were examined, which included blood metabolic markers and covariates such as age at blood collection, birth weight, gestational age, infant sex, parent-reported ethnicity, and maternal age at delivery. Marker levels were compared between maternal age groups (age range: 1544 years) using effect size analyses, which controlled for differences in group sizes and potential confounding from other covariates. We found that 13% of the markers had maternal age-related differences, including newborn metabolites with either increased (Tetradecanoylcarnitine [C14], Palmitoylcarnitine [C16], Stearoylcarnitine [C18], Oleoylcarnitine [C18:1], Malonylcarnitine [C3DC]) or decreased (3-Hydroxyisovalerylcarnitine [C5OH]) levels at an advanced maternal age (≥35 years, absolute Cohen's d > 0.2). The increased C3DC levels in this group correlated with a higher false-positive rate in newborn screening for malonic acidemia (p-value < 0.001), while no significant difference in screening performance was seen for the other markers. Maternal age is associated with inborn metabolic differences and should be considered together with other clinical variables in genetic disease screening.

18.
Biosensors (Basel) ; 13(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979528

RESUMO

Determining nucleic acid concentrations in a sample is an important step prior to proceeding with downstream analysis in molecular diagnostics. Given the need for testing DNA amounts and its purity in many samples, including in samples with very small input DNA, there is utility of novel machine learning approaches for accurate and high-throughput DNA quantification. Here, we demonstrated the ability of a neural network to predict DNA amounts coupled to paramagnetic beads. To this end, a custom-made microfluidic chip is applied to detect DNA molecules bound to beads by measuring the impedance peak response (IPR) at multiple frequencies. We leveraged electrical measurements including the frequency and imaginary and real parts of the peak intensity within a microfluidic channel as the input of deep learning models to predict DNA concentration. Specifically, 10 different deep learning architectures are examined. The results of the proposed regression model indicate that an R_Squared of 97% with a slope of 0.68 is achievable. Consequently, machine learning models can be a suitable, fast, and accurate method to measure nucleic acid concentration in a sample. The results presented in this study demonstrate the ability of the proposed neural network to use the information embedded in raw impedance data to predict the amount of DNA concentration.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Impedância Elétrica , Microfluídica , DNA
19.
Sci Adv ; 9(36): eadi4997, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672583

RESUMO

Fast and accurate detection of nucleic acids is key for pathogen identification. Methods for DNA detection generally rely on fluorescent or colorimetric readout. The development of label-free assays decreases costs and test complexity. We present a novel method combining a one-pot isothermal generation of DNA nanoballs with their detection by electrical impedance. We modified loop-mediated isothermal amplification by using compaction oligonucleotides that self-assemble the amplified target into nanoballs. Next, we use capillary-driven flow to passively pass these nanoballs through a microfluidic impedance cytometer, thus enabling a fully compact system with no moving parts. The movement of individual nanoballs is detected by a change in impedance providing a quantized readout. This approach is flexible for the detection of DNA/RNA of numerous targets (severe acute respiratory syndrome coronavirus 2, HIV, ß-lactamase gene, etc.), and we anticipate that its integration into a standalone device would provide an inexpensive (<$5), sensitive (10 target copies), and rapid test (<1 hour).


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , DNA , Oligonucleotídeos , Eletrônica
20.
Int J Neonatal Screen ; 9(4)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37987476

RESUMO

Rapid advances in the screening, diagnosis, and treatment of genetic disorders have increased the number of conditions that can be detected through universal newborn screening (NBS). However, the addition of conditions to the Recommended Uniform Screening Panel (RUSP) and the implementation of nationwide screening has been a slow process taking several years to accomplish for individual conditions. Here, we describe web-based tools and resources developed and implemented by the newborn screening translational research network (NBSTRN) to advance newborn screening research and support NBS stakeholders worldwide. The NBSTRN's tools include the Longitudinal Pediatric Data Resource (LPDR), the NBS Condition Resource (NBS-CR), the NBS Virtual Repository (NBS-VR), and the Ethical, Legal, and Social Issues (ELSI) Advantage. Research programs, including the Inborn Errors of Metabolism Information System (IBEM-IS), BabySeq, EarlyCheck, and Family Narratives Use Cases, have utilized NBSTRN's tools and, in turn, contributed research data to further expand and refine these resources. Additionally, we discuss ongoing tool development to facilitate the expansion of genetic disease screening in increasingly diverse populations. In conclusion, NBSTRN's tools and resources provide a trusted platform to enable NBS stakeholders to advance NBS research and improve clinical care for patients and their families.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA